Infinite Series

Class 25: Wednesday April 2

Example 1 $\sum_{k=1}^{\infty} \frac{1}{k}$ (This is called the HARMONIC SERIES.)
Partial sums (fill in the sums):

$$
\begin{aligned}
& S_{1}=1= \\
& S_{2}=1+1 / 2= \\
& S_{3}=1+1 / 2+1 / 3= \\
& S_{4}=1+1 / 2+1 / 3+1 / 4= \\
& S_{5}=1+1 / 2+1 / 3+1 / 4+1 / 5=
\end{aligned}
$$

Do you think these partial sums have a limit?

We need to come up with a systematic way of determining the convergence or divergence of an infinite series. Over the next week or so we will learn about Convergence Tests.

Let us look at the Left-hand Riemann Sum approximation \mathbf{L} of the area under the curve $f(x)=1 / x$ from $a=1$ up to $b=10$ with $\Delta x=1$. Sketch this approximation below...

Is \mathbf{L} an over-estimate or an under-estimate?

What is the relationship between the Left-hand Riemann Sum $\operatorname{LEFT}(10), S_{10}$ and the $\int_{1}^{10} \frac{1}{x} d x$? Write in those relationships ($<,>=$, etc) below...
$\operatorname{LEFT}(10)$

$$
S_{10}
$$

$$
\int_{1}^{10} \frac{1}{x} d x
$$

What happens if instead of 10 we sum up to 1000 ? 100000? Infinity?

So, by geometry we can show that $\sum_{i=1}^{\infty} \frac{1}{k}$, the HARMONIC SERIES,

1. INTEGRAL TEST If $a(k)>0$ for all k If $\int_{1}^{\infty} a(k) d k$ CONVERGES, then $\sum_{k=1}^{\infty} a(k)$ CONVERGES.

If $\int_{1}^{\infty} a(k) d k$ DIVERGES, then $\sum_{k=1}^{\infty} a(k)$ DIVERGES.

GroupWork

Determine whether the following infinite series CONVERGE or DIVERGE.
$\underline{\text { Example } 2} \quad \sum_{k=1}^{\infty} \frac{1}{k^{2}}$
$\underline{\text { Example } 3} \quad \sum_{k=1}^{\infty} k^{2}$
$\underline{\text { Example } 4} \quad \sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$

Connection Between Improper Integrals of the First Kind and Infinite Series

By applying the integral test to the infinite series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ and reviewing the examples above fill in the appropriate condition on p in the RULE below

$$
\sum_{k=1}^{\infty} \frac{1}{k^{p}} \begin{cases}\text { CONVERGES } & \text { when } p \\ \text { DIVERGES } & \text { when } p\end{cases}
$$

