Infinite Series Class 25: Wednesday April 2

Example 1 $\sum_{k=1}^{\infty} \frac{1}{k}$ (This is called the **HARMONIC SERIES**.) Partial sums (fill in the sums): $S_1 = 1 =$ $S_2 = 1 + 1/2 =$ $S_3 = 1 + 1/2 + 1/3 =$

 $S_5 = 1 + 1/2 + 1/3 + 1/4 + 1/5 =$

 $S_4 = 1 + 1/2 + 1/3 + 1/4 =$

Do you think these partial sums have a limit?

We need to come up with a systematic way of determining the convergence or divergence of an infinite series. Over the next week or so we will learn about **Convergence Tests**.

Let us look at the Left-hand Riemann Sum approximation **L** of the area under the curve f(x) = 1/xfrom a = 1 up to b = 10 with $\Delta x = 1$. Sketch this approximation below...

Is L an over-estimate or an under-estimate?

What is the relationship between the Left-hand Riemann Sum LEFT(10), S_{10} and the $\int_{1}^{10} \frac{1}{x} dx$? Write in those relationships (<, > =, etc) below...

LEFT(10) S_{10} $\int_{1}^{10} \frac{1}{x} dx$

What happens if instead of 10 we sum up to 1000? 100000? Infinity?

So, by geometry we can show that
$$\sum_{i=1}^{\infty} \frac{1}{k}$$
, the HARMONIC SERIES,

1. INTEGRAL TEST If a(k) > 0 for all k If $\int_{1}^{\infty} a(k) dk$ CONVERGES, then $\sum_{k=1}^{\infty} a(k)$ CONVERGES.

If
$$\int_{1}^{\infty} a(k) dk$$
 DIVERGES, then $\sum_{k=1}^{\infty} a(k)$ DIVERGES.

GroupWork

Determine whether the following infinite series CONVERGE or DIVERGE.

Example 2
$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

Example 3
$$\sum_{k=1}^{\infty} k^2$$

Example 4
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$$

Connection Between Improper Integrals of the First Kind and Infinite Series By applying the integral test to the infinite series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ and reviewing the examples above fill in the appropriate condition on p in the RULE below

$$\sum_{k=1}^{\infty} \frac{1}{k^p} \begin{cases} \text{CONVERGES} & \text{when } p \\ \\ \text{DIVERGES} & \text{when } p \end{cases}$$