## Numerical Integration Class 18: Monday March 10

**NUMERICAL INTEGRATION REVISITED.** At this point (after the lab) we know several ways of approximating a definite integral, say  $\int_a^b f(x) dx$ , using numerical approximations. These include: Riemann Sum Approximations (specifically we had the computer do left-endpoint, right-endpoint, and midpoint approximations), Trapezoidal Approximations, and Simpson's Approximations. Let's try each of these for the following example (with N=2 subintervals):

$$\int_0^4 x^2 \ dx =$$

| T 0. |      |           |
|------|------|-----------|
| Loft | endr | oint      |
| Der  | ещи  | , ОТТТО • |

Right endpoint.

Midpoint.

Trapezoidal. Simply the average of the left and right endpoint approximations.

Simpson's. Simply the weighted average of the midpoint  $(\frac{2}{3})$  and trapezoidal  $(\frac{1}{3})$  approximations.

## Comparing the Methods

1. Using Left-Hand Riemann Sums (L), Right-Hand Riemann Sums (L), the Midpoint method (M) and the Trapezoidal Rule (T) (all with N=50) one obtains the approximations  $\mathbf{L}$ ,  $\mathbf{R}$ ,  $\mathbf{M}$  and  $\mathbf{T}$  to  $I = \int_1^3 \sqrt[5]{x} \ln(x) \, dx$ . From looking at the graph of  $\sqrt[5]{x} \ln(x)$ , the values themselves and your knowledge of each of the numerical methods, fill in the table with the letter ( $\mathbf{L}$ ,  $\mathbf{R}$ ,  $\mathbf{M}$  or  $\mathbf{T}$ ) associated with the approximate value to the integral. and fill in the table with the name of the method associated with the approximate value.

| Numerical Method | Approximate value |
|------------------|-------------------|
|                  | 1.493173          |
|                  | 1.520544          |
|                  | 1.520643          |
|                  | 1.547916          |



2. For each of the values you filled in the table in part (1), write down your reasons. That is, *explain* how you know the relative sizes of L, R, M and T.

- 3. Use the data in the completed table to compute a numerical approximation S to the integral using Simpson's Rule.
- 4. Write a formula for **S** using some or all of the symbols **L**, **R**, **M** and **T**