Fundamental Theorem of Calculus Class 9: Monday February 10

Definition: f'(x) is the derivative of f(x); so we can also say that f(x) is an antiderivative of f'(x).

Example: $3x^2$ is _____ of x^3 , so ____ is an antiderivative of ____.

- 1. Give two more functions that are antiderivatives of $3x^2$.
- 2. How many antiderivatives does $3x^2$ have?
- 3. Write down all of them!

THE FUNDAMENTAL THEOREM OF CALCULUS (PART ONE)

Theorem: For any continuous function g(x), to evaluate

$$\int_a^b g(x) \ dx$$

find a function G(x) that is an antiderivative of g(x); then

$$\int_{a}^{b} g(x) dx = G(b) - G(a)$$

For more information you can read Section 4.5 of Smith & Minton.

Examples:

4.
$$\int_{4}^{100} \cos(x) dx =$$

5. Find the area under the curve $f(x) = e^x$ on the interval [-2, 2].

6.
$$\int_{-3}^{1} x^4 dx =$$

THE FUNDAMENTAL THEOREM OF CALCULUS (PART TWO)

Theorem: If f(x) is a continuous function on [a, b] and F(x) is an accumulation function for f(x) defined as

$$F(x) = \int_{a}^{x} f(t) \ dt$$

then F'(x) = f(x). In other words, $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$

7.
$$F(x) = \int_0^x e^{-s} ds$$
. What is $F'(x)$?

8.
$$G(x) = \int_{x}^{2} \ln(t^2 + 1) dt$$
. What is $G'(x)$?

9.
$$H(x) = \int_{1}^{x^2} e^t dt$$
. What is $H'(x)$?

10. Evaluate
$$\frac{d}{dx} \int_x^{\sin(x)} \sqrt{k^2 + 1} dk$$