Accumulation Functions as Antiderivatives
 Class 7: Wednesday February 5

In general, we define the accumulation function $A(\mathcal{X})$ for the function $f(x)$ as $A(\mathcal{X})=\int_{0}^{\mathcal{X}} f(x) d x$

1. As $\mathcal{X}>0$ gets bigger, what does the graph of $A(\mathcal{X})$, the accumulation function for the contstant function $f(x)=1$ from 0 to \mathcal{X} look like? (Describe the shape)

HINT: Compute $A(0), A(1), A(-1), A(2), A(-2)$ et cetera...
2. As $\mathcal{X}>0$ gets bigger, what does the graph of $B(\mathcal{X})=\int_{0}^{\mathcal{X}} g(x) d x$, the accumulation function for the linear function $g(x)=x$ from 0 to \mathcal{X} look like? (Describe the shape)

HINT: Compute $B(0), B(1), B(-1), B(2), B(-2)$ et cetera...
3. Do you see any link between the SLOPE of the graph of the accumulation function $A(\mathcal{X})$ and the VALUE of the function $f(x)$? Can you use this information to write down an expression for $A(\mathcal{X})$ in terms of \mathcal{X} ?
4. Do you see any link between the SLOPE of the graph of the accumulation function $B(\mathcal{X})$ and the VALUE of the function $g(x)$? Can you use this information to write down an expression for $A(\mathcal{X})$ in terms of \mathcal{X} ?
5. Therefore, what is the meaning of the term anti-derivative?
6. Consider the difference between $A(1)$ and $A(0) . A(1)-A(0)=$ \qquad
7. The value of $A(1)-A(0)$ can also be interpreted as an area under the graph of $f(x)$. Write down a definite integral representing this area.
8. Consider the difference between $B(2)$ and $B(0)$. Can you write down and evaluate a definite integral which is exactly equal to $B(2)-B(0)$?
9. Therefore, if you know that $F(\mathcal{X})=\int_{c}^{\mathcal{X}} f(x) d x$ is an accumulation function for $f(x)$ write down an expression which relates the value of $\int_{a}^{b} f(x) d x$ to particular values of $F(x)$

