Point Distribution ($\mathrm{N}=38$)

Range	$90+$	$85+$	$80+$	$74+$	$66+$	$59+$	$47+$	$42+$	$32+$	$32-$
Grade	A	A-	$\mathrm{B}+$	B	$\mathrm{B}-$	$\mathrm{C}+$	C	$\mathrm{C}-$	D	F
Frequency	11	5	0	5	1	3	9	2	1	1

Comments

Overall Performance on this exam was not as excellent as on the first exam. The class average fell from 82 to 71. Again Section 2 ($230 \mathrm{pm}: 76$) had a higher average than Section 1 (1030am: 67). There were 2 perfect scores of 100 and a 99 and a 98 . Nearly half (42%) of the class was able to earn either an A or A-. The median score was 75 and the mode was 49.
The exam was specifically designed to look exactly like the practice exam (Spring 2001) while testing for the techniques of integration by substitution (IBS) and integration by parts (IBP). The other topics in Unit 2 will be on the Final Exam.
\#1 (a) This problem was just a list of four anti-derivative questions. The first one caused the most difficulty: finding the anti-derivative of $f(x)=\frac{1+x^{2}}{2 x}$. Many people immediately tried IBS (won't work) or IBS (will work, but has to be done twice) instead of first SIMPLIFYING the integrand! Clearly, $\frac{1+x^{2}}{2 x}=\frac{1}{2 x}+\frac{x^{2}}{2 x}=\frac{1}{2} \frac{1}{x}+\frac{x}{2}$ and you know the anti-derivative of $\frac{1}{x}$ and $\frac{x}{2}$. (b) The function $g(x)=\frac{2 x}{1+x^{2}}$ is obviously related to $f(x)$ from part (a) but the integration methods are completely different. For $g(x)$ you can simply use IBS and obtain the answer $G(x)=\ln \left(1+x^{2}\right)$. (c) The function $h(x)=x \ln (x)-x$ should look familiar since it is the anti-derivative of $\ln (x)$. However, that means that the DERIVATIVE of $x \ln x-x$ is equal to $\ln (x)$. This question asks you for the ANTI-DERIVATIVE of $x \ln (x)-x$ which means that you need to use IBP to evaluate $\int x \ln (x)-x d x=\int x(\ln (x)-1)$ (choose $u=\ln (x)-1$ and $v^{\prime}=x$) (d) This problem is very similar to part (b) in that the function involved looks like $2 x \cdot \operatorname{FUNCTION}\left(x^{2}\right)$ where this time the FUNCTION is $\cos (u)$ while in part (b) it was $1 / u$. In addition this question asks about the anti-derivative of a "disguised constant" (e^{2} in the 230 pm version and $\sin (\pi / 2)$ in the 1030am version). Of course the anti-derivative of a constant C is simply $C x$.
\#2 This problem is nearly identical to Problem 4 from Spring 1999 from the Practice Exam problems. It basically involves showing the technique of combining integration by substitution and integration by parts to evaluate a definite integral. Part (a) involves the integral $I=\int_{0}^{1} t e^{t} d t$ which must be done by IBP. Of course the value of a definite integral must be a number, which turns out to be 1 . Part (b) GIVES you the $u(t)$ function to use in IBS which means you need to find $d u$, change the limits from t-variables to u-variables and completely convert the original integral. Part (c) asks you to evaluate the new integral, which is $J=\int_{1}^{e} \ln (u) d u=u \ln (u)-\left.u\right|_{1} ^{e}=e \ln e-e-(1 \ln 1-1)=1$. Even without knowing the value of J since it is obtained using IBS it MUST be the same value as I.
\#3 This problem was very similar to the tables in Lab 3 and Problem 5 from Spring 2001. Basically all the parts are related and the questions on the bottom of the table are the most general form of the same derivatives and anti-derivatives above it. Thus you should notice that by choosing the correct value of P and Q on line 4 you can obtain all the functions on line $0(P=1, Q=0)$, line $1(P=2, Q=0)$, line $2(P=2, Q=3)$ and line $3(P=5, Q=4)$. The derivative of $\frac{1}{P x+Q}$ is $\frac{-1}{(P x+Q)^{2}} \cdot P$ and its anti-derivative is $\frac{1}{P} \ln (P x+Q)$. Line 5 is equal to line 4 except the function is multiplied by a constant, so the anti-derivative of $\frac{-1}{(A x+B)^{2}} \cdot A \cdot A$ is $\frac{A}{A x+B}$ whose antiderivative is $\ln (A x+B)$.

