\documentstyle[12pt,psfig]\{report\}
\setlength\{ \headheight\}\{0.0in\}
\% \setlength $\{\backslash$ footheight $\}\{0.0 i n\}$
\setlength $\{$ \topmargin\}\{-0.9in\}
\setlength\{ \oddsidemargin\}\{-. 25 in\}
\setlength $\{$ \textwidth $\}$ \{ $7.0 i n\}$
\setlength $\{\backslash$ textheight $\}$ \{9.9in\}
\setlength\{\parskip\} \{. $2 i n\}$
\setlength\{ \baselineskip\} \{. 25in\}
\def\ex\{\{\cal X\}\}
$\backslash \operatorname{def} \backslash 1 \mathrm{~s}\{\backslash \mathrm{vspace}\{.3 \mathrm{~cm}\}\}$
\def $\backslash 2 \mathrm{~s}\{\backslash \mathrm{vskip} 2 \mathrm{ex}\}$
\def\3s\{\vskip3ex\}
\backslash begin\{document \}
\pagestyle\{empty\}

\1s
\hrule
\noindent
\begin\{tabular\}\{lcr\} }
$\{\backslash$ Large Quiz $\{\backslash \mathrm{bf} 5$

\& \hspace\{1in\} \&
\end\{tabular\} }
$\backslash 2 \mathrm{~s}$
\%Name: \makebox[2in]\{\hrulefill\}
\% $\backslash 2 \mathrm{~s}$
\%Date: \makebox[2in]\{\hrulefill\}
\% \1s
\begin \{tabular\} \{lcr\} }
Name: \makebox[2in]\{\hrulefill\} \& \hspace\{1.5in\} \& \\
Section: 8:30am or 10:30am (circle one) \& \hspace\{1.0in\} \& Math~120 \\
\makebox[2in] \& \hspace\{1.0in\} \& \{ \bf Wednesday March 7, 2001$\} \backslash$
\makebox[2in] \& \hspace\{1.0in\} \& Ron Buckmire \\
\backslash makebox[2in] \& \hspace\{1.0in\} \& Alan Knoerr\\
\% \makebox[2in] \& \hspace\{1.0in\} \& \\
\end\{tabular\} }
\1s
\hrule
$\backslash 2 \mathrm{~s}$
$\{\backslash$ Large $\{\backslash b f$ Topic covered:\}\} Integration by substitution
\{\small The point of this quiz is to illustrate your ability to evaluate integralsby integration by substitution.\}
\vfill
$\{\backslash$ Large $\{\backslash \mathrm{bf}$ Instructions: \}\}
\begin\{itemize\} }
- Once you open the quiz, you have 50 minutes to complete it.
- Where ever possible indicate your answer clearly, in the form of a sentence, showing all work necessary to understand your solution.
- You may not use the book or any of your class notes, but you may use a
calculator. You must work alone.
- If you use your own paper, please staple it to the quiz before coming to class.
If you don't have a stapler, buy one.
- After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- Relax and enjoy....
- \{\bf This quiz is due on Friday, March 9\}, at the beginning of class. NO LATE QUIZZES WILL BE ACCEPTED.
\end\{itemize\} }
\1s
\(\{\backslash b f\) Pledge: \(\}\) I, \makebox[2in]\{\hrulefill\}, pledge my honor as a human being and Occidental student, that \(I\) have followed all the rules above to the letter and in spirit.
\(\backslash 1 \mathrm{~s}\)
\hrule

\begin\{tabbing\} }
Math 120 Spring 2001 \` Quiz \{\bf 5\}\\
\end\{tabbing\} }
\vspace* $\{-60 \mathrm{pt}\}$
\backslash begin $\{$ center $\}$
\{\large\bf SHOW ALL YOUR WORK\}
\end } \{ center \}
\vspace*\{-24pt \}
\noindent 1. \{ \bf (a) \} \{\it (4 points)\}. Evaluate the integral \$A = \displaystyle \int_1^5 \frac\{1\}\{\sqrt\{u\}\} \ du\$
\vfill
\noindent $\{\backslash \mathrm{bf}(\mathrm{b})\}\{$ it (6 points) \}. Show that your answer in $\{\backslash \mathrm{bf}(\mathrm{a})\}$ can be used to evaluate the integral $\$ B=$ ldisplaystyle $\backslash i n t _0 \wedge 2 ~ \ f r a c\{x\}\left\{\backslash \operatorname{sqrt}\left\{x^{\wedge} 2+1\right\}\right\} d x . \$$ In other words, show how one integral can be transformed into the other via integration by substitution, and thus how \$A\$ and \$B\$.
\vfill
\vfill
\end \{document \} }

