Math 120 Lab 3: Length as an Application of Integration Spring 2001

Consider the graph of f(z) = v/4 — a2 for x € [0, 2] below.

1. Setup. [TABLE WORK |

Recall that this curve is simply one quarter of the circle with radius = 2 centered at (0,0). In the
first lab, we saw that the area in the first quadrant under this curve was equal to 7. Why is the
length of the curve above also equal to 77

We can calculate lengths of curves by successive approximations using the distance formula. If we
partition the interval [0,2] into N equal pieces, each with length Az, and corresponding change in
output value Ayx = f(tx—1) — f(tx), then

N
LENGTH ~ Y~ \/(A2)? + (Ay)?.
k=1

In order to verify this to the satisfaction of everyone in the group, on the picture above, break up
the interval [0, 2] into four pieces, and draw the four straight secant lines on the graph of the quarter
circle you would use to approximate the length of the curve. Then write out and compute the sum

Shor (A)? + (Agy)2.




2. | COMPUTER WORK |

The program LENGTH.TRU calculates the approximation on the previous page. Find this
approximation using the program. You must adjust the program by defining the function f, giving
the domain of the function, and telling it to use n = 4 steps.

Now find the length of f(x) = v/4 — 22 on the interval [0, 2] accurate to four decimal places. You
will need to adjust the number of steps, n, until you converge to three decimal places of accuracy.
Give your approximate length as well as how many steps you used to get this. (Note: Organizing
your work into a table may help you see the convergence to four decimal places.)



3. |TABLE WORK |

N
Converting to a Riemann Sum. The sum » \/(Ayk)2 + (Azy)? is NOT a Riemann sum. Do
k=1

you know why?

N

We will now “convert” the sum » \/ (Ayx)? + (Azy)? into a Riemann sum. In fact, we will use the
k=1

microscope equation Ay ~ f’(a)Ax to do so!

The Microscope Equation

Consider a function f(z) and the point A (a, (f(a)) on the graph. If we want to know the function
value at some point B (b, 1), near A, as long as the function is differentiable (locally linear) at
A we can assume that the function can be approximated by the tangent at A and thus get an
approximation for the exact value of the function at b in terms of a, f(a) and b can be obtained by
evaluating the tangent line at = b. We’ll call this approximation for f(b) the value y,

Equation of tangent line at (a, f(a)) is:

y = fla)+ f(a)(z - a)

Value of the tangent line at x = b is:

£(b) = f(a) + f'(a)(b— a)
But
yp =~ f(b)
’ w— f(a) ~ f'(a)(b—a)

If we think of (b — a) as a change in x, i.e. Az and y, — f(a) as a change in y, i.e. Ay we get what
is known as the microscope equation:
Ay =~ f'(a)Az

Fill in all the missing pieces below:

N
LENGTH ~ Y~ \/(Az;)? + (Ay)?

k=1

e Since the microscope equation Ay ~ f'(a)Ax tells us that for small Az, the corresponding Ay is
approximately equal to f’(a)Ax, we shall replace Ay, with f’(z;)Az. Note that z; is our choice of



sampling point. Do so below:

LENGTH ~ f: V(Az)? + ( )2

e Factor (Az)? out of the radical. Be careful to see you are removing it from both terms and be
careful about what goes outside the radical now.

N
LENGTH%Z\/( )+ ( )2 ( )
k=1
N
e You should now have a Riemann sum, Y _ g(z;)Az, where the function we are summing is
k=1

g(z) = /( ),

where f is the function, the arclength of which we want to find. Explain why we have converted it
into the form of a Riemann sum. REMARK: Be sure you understand that this is a Riemann sum
using g, NOT f itself.

We conclude that

Length = lim_ ﬁ: V14 [f (zr)]? Az = /ab V14 [f'(x)]? d.

Before moving back to the computer, let’s set up the Riemann sum which we obtained back in part
3 to find the length of f(z) = /4 — z? on the interval [0, 2].

Simplify the function g(x) above (using algebra) as much as possible before putting the function in
the Riemann sum below:

N
LENGTH ~ Z g(z)Axy, =

k=1



4. [COMPUTER WORK |

(a) Use RIEMANN.TRU with the appropriate function, g(z) above, the appropriate interval,
and the left endpoint sample points, zx = a + (k — 1)Az (or as the computer has it, LET x = a +
k*Deltax - (1)*Delta_x). Calculate this length to three decimal places of accuracy. What do you
get as the length and how many subintervals did this require? Why do you think it required such
a fine partition (so many small steps)? (Hint: Look at the function you're taking a Riemann sum

over (NOT f1).)

(b) Try running the program with sample points on the right of each interval, z; = a + kAz, and
try to obtain the length to three decimal places. What happens here and why did it happen?

(¢) Try running the program with sample points in the middle of each interval, x;, = a+kAz—0.5Ax,
and try to obtain the length to three decimal places.

(d) Think of an explanation for the difference in results you get when you use different sample
points.



