Taylor used polynomials to approximate functions.
Fourier used trigonometric functions to approximate periodic functions.

We write $P_n(x)$ for the nth degree Taylor polynomial.
Example: $P_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$.

We write $F_n(x)$ for the nth degree Fourier “polynomial.”
Example: $F_3(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) + b_1 \sin(x) + b_2 \sin(2x) + b_3 \sin(3x)$.
a_k and b_k are some constants. They are called the coefficients.

A Taylor Series is $\sum_{k=1}^{\infty} a_k x^k$. A Fourier Series is $a_0 + \sum_{k=1}^{\infty} b_k \sin(kx) + a_k \cos(kx)$

For a periodic function $f(t)$ whose period is 2π, the coefficients of its Fourier Series are:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt$$
$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt, \ k = 1, 2, 3, \cdots$$
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt, \ k = 1, 2, 3, \cdots$$

EXAMPLE

$$f(x) = \begin{cases}
7 & \text{if } (2n)\pi \leq x \leq (2n + 1)\pi \\
0 & \text{if } (2n + 1)\pi < x < (2n + 2)\pi
\end{cases}$$

1. Sketch the graph of $f(x)$ below.

2. Find the first degree Fourier polynomial for $f(x)$.

3. Find the second degree Fourier polynomial for $f(x)$.
Fourier Series
In general, a Fourier Series is used to approximate a function \(f(t) \) with period \([0, T]\)

\[
f(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos\left(\frac{2k\pi}{T} t\right) + \sum_{k=1}^{\infty} b_k \sin\left(\frac{2k\pi}{T} t\right)
\]

where

\[
a_0 = \frac{1}{T} \int_0^T f(t) \, dt
\]
\[
a_k = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2k\pi}{T} t\right) \, dt
\]
\[
b_k = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2k\pi}{T} t\right) \, dt
\]

This usually involves a fair amount of integration.

EXAMPLE

\(f(x) = \begin{cases}
 x & \text{if } -1 \leq x \leq 0 \\
 -x & \text{if } 0 < x < 1
\end{cases} \)

1. Sketch the graph of \(f(x) \) below.

2. Find the zeroth degree Fourier polynomial for \(f(x) \).

3. How would you show the general form of the Fourier series for \(f(x) \) is \(F_\infty(x) = \frac{-1}{2} + \sum_{k=1}^{\infty} \frac{2 - 2 \cos(k\pi)}{(k\pi)^2} \cos(k\pi x) \).

4. For what values of \(x \) will the infinite series converge? Which test would you use?
Math 118 Fall 2002, Quiz 10. Consider the function $f(x)$ which has period 2π

$$f(x) = \begin{cases}
-1, & \text{when } -\pi < x < 0 \\
1, & \text{when } 0 \leq x < \pi
\end{cases}$$

(a) (2 points) Sketch a graph of $f(x)$ on the interval from $-3\pi \leq x \leq 3\pi$ in the space below

(b) (4 points) Compute the value of the a_k (cosine) coefficients of the Fourier series, where $k = 0, 1, 2, 3, \ldots$

(c) (4 points) Compute the value of the b_k (sine) coefficients of the Fourier series, where $k = 1, 2, 3, \ldots$
The figures in the first column show $F_1(x)$, $F_7(x)$ and $F_{15}(x)$ which are the solution to Quiz 10, Fall 2002.

In the righthand column F_1, F_3 and F_{11} are shown for the example on the previous page.