Smith & Minton, page 702, # 19. Use a known Taylor polynomial with \(n \) non-zero terms to estimate the value of the integral. \(\int_{-1}^{1} e^{-x^2} \, dx, \quad n = 5 \)

Smith & Minton, page 702, # 37. The power of a reflecting telescope is proportional to the surface area \(S \) of the parabolic reflector, where

\[
S = \frac{8\pi}{3} c^2 \left[\left(\frac{d^2}{16c^2} + 1 \right)^{3/2} - 1 \right].
\]

Here, \(d \) is the diameter of the parabolic reflector, which has depth \(k \) with \(c = \frac{d^2}{4k} \). Expand the term

\[
\left(\frac{d^2}{16c^2} + 1 \right)^{3/2}
\]

and show that if \(\frac{d^2}{16c^2} \) is small, then \(S \approx \frac{\pi d^2}{4} \).
Topics for this week’s exam can be found in:

Worksheets
17: The Accumulation Function
18: Numerical Integration
19: Arc Length
20: Definition of the Integral
21: Fundamental Theorem of Calculus (3 parts)
22: Application of (Techniques of) Integration
23: Error Analysis of Numerical Integration
24: Periodic Functions
25: Periodic Motion of a Spring
26: Nonlinear Oscillations
27: Taylor Polynomials
28: Error in Taylor Polynomials
29: Application of Taylor Polynomials to IVPs and Integrals

Quizzes
7: Fundamental Theorem of Calculus
6: Numerical Integration
8: Integration Techniques
9: Taylor Polynomials

Labs
5: Simpson’s Rule
6: Techniques of Anti-differentiation
7: Investigating Trigonometric Functions
8: Investigating Taylor Polynomials

Homework
#12 to #19