
Math 118 Fall 2003Advanced Placement Calculus
Class 28: Friday November 7

Errors in Taylor Polynomial Approximations

Consider the fourth order Taylor polynomial approximation of a function f for x-values near 0:

P4(x) =
4∑

k=0

f (k)(0)
k!

xk = f(0) + f ′(0) x +
f ′′(0)

2
x2 +

f ′′′(0)
6

x3 +
f (4)(0)

24
x4.

This is the best fit of f near x = 0 that we can get from a fourth degree polynomial. The goal for today
is to determine how good the fit is. How well does P4(x) approximate f(x) near x = 0?

We begin with an example. Consider the fourth order Taylor polynomial approximating the function
g(x) = ex for x-values near 0. In the last class, we found

P4(x) = 1 + x +
1
2
x2 +

1
6
x3 +

1
24

x4.

1. Define y = g(x)− P4(x). Thus y tells us the error of P4 in approximating g. We will refer to y as
the error function.

a. Using your calculator, graph y vs x in the plot box −5 < x < 5, −15 < y < 15. Sketch what
you see. Describe the difference between g(x) and P4(x) for −2 < x < 2.

b. Now zoom in on your graph, setting your x-range to −2 < x < 2. Before you graph this, be
sure to adjust your y-range appropriately. Describe the difference between g(x) and P4(x)
for −1 < x < 1.

c. Zoom in again on your graph, setting your plot box to −1 < x < 1 and −0.01 < y < 0.01.
Describe the difference between g(x) and P4(x) for −1 < x < 1.
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2. Now let’s consider the shape of the graph of the error function y that you have been plotting.

Notice how the graph of the error function y looks like the graph of a cubic function. We’ll assume
that y is cubic and try to build a function to model y.

a. Our first order of business is to assemble what we have observed about the values of the error
function y near x = 0.

∗ When x = 0, we see from the definition of our error function

y = g(0) − P4(0) =

∗ When x = 1, we see from the graph that the error y ≈ 0.01. Verify this on the graph of
y using the trace feature on your calculator.

b. Then a cubic function that might model our error function y is 0.01x3. Does this satisfies
the two observations we made above?

c. Now graph this possible model function y2 = 0.01x3 along with the error function y on the
plot box −1 < x < 1 and −0.01 < y < 0.01. How well does our model function represent the
error function?

3. We see that the cubic function increased faster on the interval 0 < x < 1 than our error function
did. So we look for another odd power function (why odd?) that bows out more on this interval.

a. Let’s just try the function 0.01x5. Define this function on your calculator. Graph this with
the error function y and the cubic model function on the same plot box and compare the
graphs.

b. Maybe the function 0.01x7 is even better. Graph this too and compare it with the other
graphs.
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4. a. These higher degree functions look promising as matches for the error function y, at least
graphically from what can be seen on the little calculator screen. How about numerically?
We will look at the ratio of error function and each of the three odd power functions. This
will give us a comparison of the relative size of the two functions in the ratio. In your teams,
divide up the work and fill in the following table with three decimal places of accuracy. (If
you don’t know how to use the functions on your calculator efficiently, see the note below.)

x
ex − P4(x)

0.01x3

ex − P4(x)
0.01x5

ex − P4(x)
0.01x7

1.00

0.50

0.10

0.05

0.01

Note: On your TI-83 calculator, you should have

Y 1 = ex − (1 + x + x2/2 + x3/6 + x4/24)
Y 2 = 0.01x3

Y 3 = 0.01x5

Y 4 = 0.01x7

Use these function definitions to your advantage. For example, on the TI-83, if you are trying
to find the value of the ratio (ex − P4(x))/(0.01x3) when x = 0.5, you can do the following
steps:

∗ Store 0.5 as the value of X: (0.5 STO→ X,T,Θ,n ENTER ).

∗ Press VARS , select Y-VARS and under the FUNCTION menu, select Y1. Then you should
see Y1 on the home screen. We want to divide this by Y2, so press ÷ VARS , select
Y-VARS and under the FUNCTION menu, select Y2. Now you should have Y1/Y2 on the
home screen.

∗ Press ENTER , and the calculator gives you the value of Y1/Y2 at X=0.5.
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b. Notice that, as x → 0, each of the functions

ex − P(x), 0.01x3, 0.01x5, and 0.01x7

approaches 0. (We see this graphically as all our graphs pass through the origin.)

Now look at your table and answer the following using your numerical evidence.

∗ As x → 0,
ex − P4(x)

0.01x3
→

So, as x → 0, which function approaches 0 faster,

ex − P4(x) or 0.01x3? (circle one)

∗ As x → 0,
ex − P4(x)

0.01x7
→

So, as x → 0, which function approaches 0 faster,

ex − P4(x) or 0.01x7? (circle one)

∗ As x → 0,
ex − P4(x)

0.01x5
→

Now this is an interesting case, because the ratio of the error function and the fifth degree
model is not zooming to 0 or ∞. In fact, it appears that the ratio is fairly constant.
This implies that the error function and x5 are strongly related as x → 0.

c. We say that the error function ex − P4(x) has the same order of magnitude as x5 as x → 0
because

lim
x→0

ex − P4(x)
x5

= constant

In this example, the constant can be roughly estimated by (0.01) · (0.85). Where did this
value come from?

d. More generally, f(x) has the same order of magnitude as h(x) as x → a if there exists a
constant c such that

lim
x→a

f(x)
h(x)

= c.

The notation for this statement is

f(x) = O(h(x)) as x → a

where the big O denotes order.
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5. Let’s get back to our main question: how well does the fourth degree Taylor polynomial P4(x)
approximate the function g(x) near x = 0? We found that the error function and a fifth degree
function had the same order of magnitude as x → 0 :

[g(x) − P4(x)] = O(x5).

a. Compare this statement with the definition of the order of magnitude on the previous page
(part d). What is the function f? What is the function h? What is the limit point a?

b. From g(x) − P4(x) = O(x5), we can write

ex =
(
1 + x +

x2

2
+

x3

6
+

x4

24

)
+ O(x5).

Double check the definitions of g and P4 from the first page.

Conclusion:

This worksheet has presented an example of Taylor’s Theorem: If a function f(x) has its first n
derivatives defined at a point x = a, then

f(x) =
n∑

k=0

f (k)(a)
k!

(x − a)k + R(x)

where R(x) is the remainder and

R(x) = O([x − a]n+1) as x → a.

From this theorem, we can say: since g(x) = ex has its first n = 4 derivatives defined at the point
x = 0, then

g(x) =
4∑

k=0

g(k)(0)
k!

(x − 0)k + R(x)

where R(x) is the remainder and

R(x) = O([x − 0]4+1) = O(x5) as x → 0.



Math 118 Class 28 Fall 2003

-1

0

1

2

3

4

5

6

7

8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

exp(x)
1+x+x*x*.5+x**3/6+x**4/24

1+x
1+x+x*x*.5

1+x+x*x*.5+x**3/6

-0.01

-0.005

0

0.005

0.01

-1 -0.5 0 0.5 1

exp(x) - (1+x+.5*x*x+x*x*x/6+x*x*x*x/24)
.01*x**5
.01*x**7
.01*x**3


