There are many functions and systems which exhibit periodic behavior. The textbook refers to the sine and cosine functions as the *circular functions* since one can define all the points on a unit circle centered at the origin using the equations

$$x = \cos(t), \qquad y = \sin(t)$$

where t is a measurement of the angular displacement from the positive x-axis. The sine and cosine functions are also the most basic examples of *periodic functions*. A function f is **periodic** with a period T > 0 if and only if

$$f(t+T) = f(t).$$

1. Is 2π a period of $\cos(t)$? Is 4π a period of $\cos(t)$? Is 6π a period of $\cos(t)$? What is the *smallest* period of $f(t) = \cos(t)$?

The *smallest* period of f is said to be **the period** of f. The **frequency** of f is defined to be 1/T, where T is the period of f.

- 2. Find the period and frequency of $f(t) = \cos(t)$.
- 3. Find the period and frequency of $g(t) = \cos(2t)$.

4. The **amplitude** of a periodic function is the largest value the function attains, regardless of sign. Find the period, frequency and amplitude of $h(t) = \cos(nt)$, where n is a positive integer.

Math 118

5. Consider $f(x) = x^2$ and g(x) = f(x+2) and h(x) = f(x-1). Sketch f(x), g(x) and h(x) below (on the same axes).

(a) g(x) = f(x+2) is the same function as f(x) SHIFTED _____ UNITS TO THE _____
(b) h(x) = f(x-1) is the same function as f(x) SHIFTED _____ UNITS TO THE _____

6. Look at the graphs of sin(x) and cos(x) below and then answer the questions below

(a) $\sin(x)$ is the same function as $\cos(x)$ SHIFTED _____ UNITS TO THE RIGHT.

(b) $\cos(x)$ is the same function as $\sin(x)$ SHIFTED _____ UNITS TO THE RIGHT.

(c) Therefore we could write $\sin(x) = \cos(x - \phi)$. What is the value of ϕ ?

(d) We can also write $\cos(x) = \sin(x - \phi)$. What is the value of ϕ ?

(e) Is there more than one value of ϕ ? Is there more than one value of α ? These numbers are called **phase shifts**.

7. A function is said to be even if f(-x) = f(x). It is said to be odd if f(-x) = -f(x). A nonzero function can either be classified as even, odd or neither. (a) Is $\sin(x)$ even, odd or neither?

(b) Is $\cos(x)$ even, odd or neither?