Error Analysis of Numerical Integration

Today we will be trying to obtain expressions for the relationship between $I=\int_{a}^{b} f(x) d x$ and A the numerical approximation to the value of I. Often what we are really interested is $E=|A-I|$ the absolute error in the numerical approximation.

We will use Left and Right Riemann Sums to approximate the area "under the curves" in the figures. We will use Error Stacks to bound the error of our approximation.

Riemann Sums and Error Stacks

Thus we can show that for a Riemann sum $E=f^{\prime}(c)(b-a) \Delta x$ and E is proportional to and \qquad

We know that the error due to trapezoid and midpoint depend on the \qquad of the curve.
We might have noticed that the error decreases as \qquad increases.
We also know that the error due to midpoint is always less than trapezoid.
It turns out that the expressions for these errors look like:
$|I-T|=f^{\prime \prime}(c)(b-a) \frac{h^{2}}{12}=f^{\prime \prime}(c) \frac{(b-a)^{3}}{12 N^{2}}$
$|I-M|=f^{\prime \prime}(c)(b-a) \frac{h^{2}}{24 N^{2}}=f^{\prime \prime}(c) \frac{(b-a)^{3}}{24 N^{2}}$
$|I-S|=f^{(4)}(c)(b-a) \frac{h^{4}}{2880}=f^{(4)}(c) \frac{(b-a)^{5}}{2880 N^{4}}$ where $h=\frac{b-a}{N}=\Delta x$.

Error Control

We can use our knowledge of how the error in our approximation depends on N and h to determine how large N would have to be to get a certain error.

- On the interval between $x=4$ and $x=13$, the function $f(x)$ is decreasing. $f(4)=212$ and $f(13)=-8$. Find the size of Δx needed to ensure that any Riemann sum using that Δx is within 0.1 of the actual value. Then find the number of subintervals n needed.
- On the same interval we somehow know that $f^{\prime \prime \prime \prime}$ is always less than 20 . How large would N have to be to obtain a maximum error of 0.0001 when using Simpson's Method?

