Critical Points for Functions of Two Variables

Definition: $\quad z=f(x, y)$ has a local maximum at $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \geq f(x, y)$, for all (x, y) in some neighborhood of $\left(x_{0}, y_{0}\right)$.
Similarly, $z=f(x, y)$ has a local minimum at $\left(x_{0}, y_{0}\right)$ if $f\left(x_{0}, y_{0}\right) \leq f(x, y)$, for all (x, y) in some neighborhood of $\left(x_{0}, y_{0}\right)$.

1. Suppose we take a vertical slice in the x-direction through $f(x, y)$ at a local maximum $\left(x_{0}, y_{0}\right)$, and suppose f is locally linear there. What will this slice look like near this point? What is the value of $f_{x}\left(x_{0}, y_{0}\right)$?
2. Suppose we take a vertical slice in the y-direction through $f(x, y)$ at a local maximum $\left(x_{0}, y_{0}\right)$, and suppose f is locally linear there. What will this slice look like near this point? What is the value of $f_{y}\left(x_{0}, y_{0}\right)$?
3. What does the tangent plane to f at a locally linear local maximum $\left(x_{0}, y_{0}\right)$ look like?

Definition: Suppose $f(x, y)$ is locally linear in a neighborhood of $\left(x_{0}, y_{0}\right)$. Then $\left(x_{0}, y_{0}\right)$ is a critical point for f if

$$
f_{x}\left(x_{0}, y_{0}\right)=0 \quad \text { and } \quad f_{y}\left(x_{0}, y_{0}\right)=0
$$

Critical points are candidates for local maxima and local minima. Critical points which are not local maxima or local minima are called saddle points. Contour plots can help in classifying critical points.
4. Find critical points for the following functions:
a) $f(x, y)=-x^{2}+y^{2}$
b) $g(x, y)=(x-1)^{2}+(y-1)^{2}+3$
c) $h(x, y)=-(x / 2)^{2}-(y / 3)^{2}$

Match these functions to the contour plots below, and classify the critical points as local maxima, local minima, or saddle points.

