Math 118 – Week 4 Assignments Fall Term 2003 BUCKMIRE

Monday September 15 Class 7:

We will continue our analysis of initial value problems with a variety of population growth models. Of particular interest is the Existence and Uniqueness Theorem for IVPs.

Reading:

Smith & Minton, p. 503-509, 516-518, p 512-514

Homework #5 (5 points):

Verify that the given formula is a solution to the initial value problem

(a)
$$y' = y^2, y(0) = 5$$

(a)
$$y' = y^2, y(0) = 5$$
 $y(t) = 1/(\frac{1}{5} - t)$

(b)
$$y' = y^3, y(0) = 5$$

$$y(t) = 1/\sqrt{\frac{1}{25} - t}$$

(c)
$$y' = y^4, y(0) = 5$$

(b)
$$y' = y^3, y(0) = 5$$
 $y(t) = 1/\sqrt{\frac{1}{25} - t}$
(c) $y' = y^4, y(0) = 5$ $y(t) = 1/\sqrt[3]{\frac{1}{125} - t}$

- (d) Write a general formula for the solution y(t) to the initial value problem $y' = y^n, y(0) = C$ for any integer n > 1 and any constant $C \ge 0$
- (e) Write a general formula for the solution y(t) to the initial value problem $y'=t^n$, y(0)=C for any integer n > 1 and any constant $C \ge 0$

Due: Class 8

Wednesday September 17 Class 8:

We will continue with more challenging initial value problems based on Newton's Law of Cooling.

Reading:

Smith & Minton, p. 506-508

Homework #6 (4 points):

Complete the handout on the initial value problem concerning glucose infusion.

Due: Class 9

Thursday September 18 Lab #2: Newton's Method

Topic: We will construct Newton's method as applied to a general function. With this in hand, we will compare this method to the Babylonian method for finding square roots and reciprocals.

Friday September 19 Class 9:

We will begin the discussion of local linearity and its relation to the definition of a derivative. We'll construct the "microscope equation" and demonstrate its uses in estimation and error analysis.

Reading:

Smith & Minton, p. 170–171

Homework:

Quiz # 3: The Microscope Approximation

Due: Class 10