than others.

Fall 2002

ADVANCED PLACEMENT CALCULUS

Class 33: Monday November 25

Applying Convergence Tests to Infinite Series; Intro to Fourier Series

We now have a stable of convergence tests at our disposal: Zero-Limit Divergence Test Absolute Ratio Test Root Test **Alternating Series Test Integral Test** Comparison Test For each of the above tests write down a sentence or mathematical list of symbols which indicate your

understanding of how they work. You may also want to indicate which ones you find are more useful

Fourier Series

Taylor used polynomials to approximate functions.

Fourier used trigonometric functions to approximate **periodic** functions.

We write $P_n(x)$ for the *n*th degree Taylor polynomial.

Example:
$$P_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$$
.

We write $F_n(x)$ for the nth degree Fourier "polynomial."

Example: $F_3(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) + b_1 \sin(x) + b_2 \sin(2x) + b_3 \sin(3x)$.

 a_k and b_k are some constants. They are called the <u>coefficients</u>.

A Taylor Series is
$$\sum_{k=1}^{\infty} a_k x^k$$
. A Fourier Series is $a_0 + \sum_{k=1}^{\infty} b_k \sin(kx) + a_k \cos(kx)$

For a periodic function f(t) whose period is 2π , the coefficients of its Fourier Series are:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt$$
 $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt)dt, \ k = 1, 2, 3, \cdots$ $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt)dt, \ k = 1, 2, 3, \cdots$

EXAMPLE

$$f(x) = \begin{cases} 7 & \text{if } (2n)\pi \le x \le (2n+1)\pi \\ 0 & \text{if } (2n+1)\pi < x < (2n+2)\pi \end{cases}$$
1. Sketch the graph of $f(x)$ below.

2. Find the first degree Fourier polynomial for f(x).

3. Find the second degree Fourier polynomial for f(x).