Class 6: Monday September 16

Successive approximations and the formal definition of limit

Warm-up:

Using our model, some initial values for S, I, and R, and different values of Δt in the Excel spreadsheet some predictions about the future population sizes after 3 days can be made.

$$S'(t) = -.00001S(t)I(t)$$

$$I'(t) = .00001S(t)I(t) - 1/14I(t)$$

$$R'(t) = 1/14I(t)$$

$$S(0) = 45,400$$

$$I(0) = 2100$$

$$R(0) = 2500.$$

Estimated values of S, I, and R when t = 3

Δt	S(3)	I(3)	R(3)
1	41,435.728	5422.138	3142.1341
0.1	40,578.415	6121.2529	3300.3317
0.01	40,472.189	6207.2900	3320.5212
0.001	40,461.32	6216.0853	3322.5944
0.0001	40,460.231	6216.9668	3322.8023
0.00001	40,460.122	6217.0549	3322.8231

- 1. What do you suppose are the actual values of S, I and R at t = 3?
- 2. Why are you confident that these are the actual values?

We know that **Euler's Method** is a numerical technique for approximating solutions to initial value problems. If we decrease the size of the time step, we know that the error Euler makes decreases. Let's show exactly *how* the Euler error is related to the time step Δt .

Recall the IVP from homework #2:

$$y' = 0.321t^2, \qquad y(0) = 0.41$$

Here are the results for using Euler's Method with increasingly smaller Δt to approximate y(1). The exact solution to the IVP was $y(t) = 0.107t^3 + 0.41$

Δt	$\tilde{y}(1)$	Absolute Error
1	0.41	0.1070
0.5	0.4501	0.0669
0.25	0.4801	0.0369
0.1	0.5015	0.0155
0.01	0.5154	0.0016
0.001	0.5168	0.0002

- 1. When the size of Δt decreases by a factor of 2, what happens to the absolute error E?
- 2. When the size of Δt decreases by a factor of 10, what happens to the absolute error E?
- 3. Can you write an expression for the relationship between Euler error, E and the time step used, Δt ?

The concept of LIMITS: The concept of a *limit* is a central theme of all Calculus courses. When using the Babylonian Algorithm to estimate \sqrt{a} , the sequence of successive approximations

$$x_1$$
 $x_2 = \frac{x_1 + \frac{a}{x_1}}{2}$
 $x_3 = \frac{x_2 + \frac{a}{x_2}}{2}$
 \vdots
 $x_n = \frac{x_{n-1} + \frac{a}{x_{n-1}}}{2}$
 \vdots

stabilizes. We say that the *limit* of the sequence of successive approximations is \sqrt{a} , or, rather, that

$$\lim_{n\to\infty} x_n = \sqrt{a}.$$

Formal Definition

The limit L of a sequence x_n is said to exist if for any ϵ there exists a number N so that when n > N, $|x_n - L| < \epsilon$.

What does this mean? (Can you draw a picture of the concept of limit of a sequence)?

Think-Pair-Share Exercise

Write down a sentence in your own words expressing the definition of a limit of a sequence.

Then share your definition with your neighbor.

Babylonian Algorithm Error

The following is a sequence generated by the Babylonian algorithm as it attempts to approximate $\sqrt{17} = 4.123105626$.

Step	Approximation	Absolute Error
n	x_n	
1	1.000000	
2	9.000000	
3	5.444444	
4	4.283446	
5	4.126107	
6	4.12310	

Can you write down an expression for the error in the current Babylonian approximation related to the error in the previous Babylonian approximation?