Math 118 { Homework #3 (6 points)

a. Use Euler's Method with Ct = 1 to obtain an approximation for y(1) $\frac{1}{4}$ 0:41.

t	y	y^0	¢у	¢t
0	0.41	0	0	1
1	0.41	XXX	XXX	XXX

Use Euler's Method C = .5 to obtain an approximation for y(1) $\frac{1}{4}$ 0:4510125.

t	y	y^0	¢у	¢t
0	0.41	0	0	.5
.5	0.41	.08025	.040125	.5
1.0	0.450125	XXX	XXX	XXX

Use Euler's Method with C = :25 to obtain an approximation for $y(1) \frac{1}{4} 0:48078125$.

t	y	y^0	¢у	¢t
0	0.41	0	0	.25
.25	0.41	.0200625	.005015625	.25
.50	0.415015625	.08025	.020625	.25
.75	0.435640625	.1805625	.045140625	.25
1.0	0.480781250	XXX	XXX	XXX

b. The exact solution can be found by solving the $IVP//y^0=0.321t^2$) $y=:107t^3+C$ and when $t=0,\ y=0.41$ so C=0.41 so the exact solution is $y(t)=0.41+0.107t^3$. The exact value of $y(1)=0.1071^3+:41=0.517$

The approximate answers are all under-estimates which get more accurate as Ct gets smaller. They are underestimates because the initial slope at t=0 is zero and the exact solution we know is concave up at that point for t>0.