Derivative

Definition, algebraically and graphically. Necessity of local linearity.

Techniques of differentiation (product rule, chain rule, etc.)

Use of approximations to the derivative: $y' \approx \frac{\Delta y}{\Delta t}$

Euler’s method to approximate the solution of an IVP.

Prediction of whether Euler approximation is underestimate/overestimate

Estimation and error using the “Microscope Equation.”

1st order Taylor polynomial of $f(x)$ near $x = a$.

Newton’s method to find the root of an equation.

Information about the graph of a function from its derivatives

Optimization; finding max and min

Initial Value Problems (IVP)

Existence and Uniqueness Theorem

Checking a solution to an IVP

Information from a differential equation:

Steady state, e.g., long term population in Logistic Growth Population model.

Threshold value, e.g., SIR model.

Sketching a solution and obtaining inflection points from $y' = f(x, y), y(a) = b$

Explicit solutions

$y' = ky, \quad y(0) = c$

population model

$y' = c(y - k), \quad y(0) = A$

Newton’s Law of Cooling

$y'' = -b^2y, \quad y(0) = A, \quad y'(0) = B$

linear spring model

nonlinear spring model

Functions of two variables

Partial derivatives

Contour plots

Equation of a tangent plane; local planarity

Microscope equation and error estimation

Optimization; finding max and min

Constrained Optimization; always check the boundary critical points

Integrals

Techniques of integration (u-substitution, by parts, etc.)

Fundamental Theorem of Calculus, especially as it relates to IVPs
Applications of integration
 Accumulation Functions
 Cumulative probability distributions
 Arclength
 Area
 Volume

Summation techniques, and over/underestimation of area
 Right and left endpoint sum
 Midpoint sum
 Trapezoid sum
 Simpson’s sum
 Using sums to estimate “un–antidifferentiable” definite integrals
 Estimating Midpoint, Trapezoid, Simpson’s, Riemann Error
 Error control

Periodic functions
 Amplitude, period, phase shift, combining sine and cosine functions
 Modeling springs and pendulums
 Conservation of energy and first integrals
 Exact solution to linear spring motion IVP:
 \[y'' = -b^2 y, \quad y(0) = a, \quad y'(0) = p \]

Series
 Taylor polynomials and Taylor’s Theorem
 Taylor series
 Intervals of convergence
 Forming new series by substitution, differentiation, integration
 Using series to estimate “un–antidifferentiable” definite integrals
 Using Taylor approximations to determine the value of a limit
 Solving IVP using Taylor series/power series

Convergent and divergent series
 Geometric series
 Harmonic series
 P-series
 Alternating harmonic series
 Tests for convergence
 Zero limit divergence test
 Alternating series test
 Ratio test
 Integral test
 Root test
 Comparison test

Absolute Convergence Theorem: IF \(\sum_{k=1}^{\infty} |a_k| \) converges, THEN \(\sum_{k=1}^{\infty} a_k \) converges

Fourier polynomials and series