Math 118 Fall Term 2002

Final Exam Review

Derivative

Definition, algebraically and graphically. Necessity of local linearity.

Techniques of differentiation (product rule, chain rule, etc.)

Use of approximations to the derivative: $y' \approx \frac{\Delta y}{\Delta t}$

Euler's method to approximate the solution of an IVP.

Prediction of whether Euler approximation is underestimate/overestimte

Estimation and error using the "Microscope Equation."

 1^{st} order Taylor polynomial of f(x) near x = a.

Newton's method to find the root of an equation.

Information about the graph of a function from its derivatives

Optimization; finding max and min

Initial Value Problems (IVP)

Existence and Uniqueness Theorem

Checking a solution to an IVP

Information from a differential equation:

Steady state, e.g., long term population in Logistic Growth Population model.

Threshold value, e.g., SIR model.

Sketching a solution and obtaining inflection points from y' = f(x, y), y(a) = b

Explicit solutions

$$y' = ky$$
, $y(0) = c$

population model

$$y' = c(y - k), \quad y(0) = A$$

Newton's Law of Cooling

$$y'' = -b^2y$$
, $y(0) = A$, $y'(0) = B$

linear spring model

nonlinear spring model

Functions of two variables

Partial derivatives

Contour plots

Equation of a tangent plane; local planarity

Microscope equation and error estimation

Optimization; finding max and min

Constrained Optimization; always check the boundary critical points

Integrals

Techniques of integration (u-substitution, by parts, etc.)

Fundamental Theorem of Calculus, especially as it relates to IVPs

Applications of integration

Accumulation Functions

Cumulative probability distributions

Arclength

Area

Volume

Summation techniques, and over/underestimation of area

Right and left endpoint sum

Midpoint sum

Trapezoid sum

Simpson's sum

Using sums to estimate "un-antidifferentiable" definite integrals

Estimating Midpoint, Trapezoid, Simpson's, Riemann Error

Error control

Periodic functions

Amplitude, period, phase shift, combining sine and cosine functions

Modeling springs and pendulums

Conservation of energy and first integrals

Exact solution to linear spring motion IVP:

$$y'' = -b^2y$$
, $y(0) = a$, $y'(0) = p$

Series

Taylor polynomials and Taylor's Theorem

Taylor series

Intervals of convergence

Forming new series by substitution, differentiation, integration

Using series to estimate "un-antidifferentiable" definite integrals

Using Taylor approximations to determine the value of a limit

Solving IVP using Taylor series/power series

Convergent and divergent series

Geometric series

Harmonic series

P-series

Alternating harmonic series

Tests for convergence

Zero limit divergence test

Alternating series test

Ratio test

Integral test

Root test

Comparison test

Absolute Convergence Theorem: IF
$$\sum_{k=1}^{\infty} |a_k|$$
 converges, THEN $\sum_{k=1}^{\infty} a_k$ converges

Fourier polynomials and series