Warm-up:
Using our model, some initial values for S, I, and R, and different values of Δt in the Excel spreadsheet some predictions about the future population sizes after 3 days can be made.

$$S'(t) = -0.0001S(t)I(t)$$
$$I'(t) = 0.0001S(t)I(t) - \frac{1}{14}I(t)$$
$$R'(t) = \frac{1}{14}I(t)$$

$$S(0) = 45,400 \quad I(0) = 2100 \quad R(0) = 2500.$$
The concept of LIMITS: The concept of a limit is a central theme of all Calculus courses. When using the Babylonian Algorithm to estimate \sqrt{a}, the sequence of successive approximations

\[
\begin{align*}
 x_1 &= \\
 x_2 &= \frac{x_1 + \frac{a}{x_1}}{2} \\
 x_3 &= \frac{x_2 + \frac{a}{x_2}}{2} \\
 &\vdots \\
 x_n &= \frac{x_{n-1} + \frac{a}{x_{n-1}}}{2} \\
 &\vdots
\end{align*}
\]

stabilizes. We say that the limit of the sequence of successive approximations is \sqrt{a}, or, rather, that

\[
\lim_{n \to \infty} x_n = \sqrt{a}.
\]

Formal Definition

The limit L of a sequence x_n is said to exist if *for any* ϵ there exists a number N so that when $n > N$, $|x_n - L| < \epsilon$.

What does this mean?

Think-Pair-Share Exercise

Write down a sentence in your own words expressing the definition of a limit of a sequence.

Then share your definition with your neighbor.

The Babylonian Algorithm on your TI-83

- Let’s Store the value of A 7 STO→ ALPHA A
- Let’s store the initial guess of \sqrt{A} 1 STO→ X
- Successively approximate $(X + A/X)/2$ STO→ X