Quiz 10

BASIC CALCULUS I

Name:	
Section: 8:30 or 9:30 (circle one)	
Date:	Friday December 4, 1998
Time Begun:	Ron Buckmire
Time Ended:	Ramin Naimi

Topic covered: Inverse Functions

The point of this quiz is to demonstrate your understanding of the concept of the inverse of a function

Instructions:

- 1. Once you open the quiz, you have all weekend to complete it.
- 2. You may ask questions on the class mailing list at math110sec1-l@oxy.edu and math110sec2-l@oxy.edu. You may not send numerical answers to the lists but can ask and answer general questions about techniques and give hints on ways of solving the problems.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have ahered to these rules.
- 5. Relax and enjoy...
- 6. This quiz is due on Monday, December 7, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,	, pledge my honor as a human being and Occi-
dental student,	that I have followed all the rules above to the letter and in spirit.

SHOW ALL YOUR WORK

Given the function $f(x) = e^{\sqrt{x}}$

a. (4 points) Find the function g which is the inverse of f(x), i.e. find f^{-1} and call it g

- **b.** (1 point) Find the number **a** which solves the equation f(a) = 2
- **c.** (1 point) Find the number **b** which solves the equation g(b) = 0
- **d.** (2 points) Compute g'(2) directly from the derivative of g

e. (2 points) Find f'(a), where a is the solution of f(a) = 2 from part b. (HINT: It is probably easier for you to use your answer to **part d**. than differentiating f(x) and evaluating it at a).