1. Use the rules of differentiation to find the first derivative for the following functions. DO NOT SIMPLIFY YOUR ANSWER.
(a) $f(t)=t^{7 / 2}-3 t+5$
(b) $y=\frac{e^{x}}{x}$
(c) $g(x)=\sqrt[3]{\left(1-x^{3}\right)^{2}}$
(d) $z=2^{x} \log _{3} x$
(e) $h(x)=\frac{\ln (\sin (2 x))}{\tan (x)}$
2. Use the limit definition of the derivative to find the derivative of the function $f(x)=\frac{1}{x-2}$. You must show all of your work in order to get any credit for this problem.
3. Find the equation for the tangent line to the curve $q(x)=\frac{3^{x}}{x}$ at the point $(1,3)$.
4. What is the microscope equation (i.e. equation of tangent line) for $y=\sin (x)$ at the point $\left(\frac{\pi}{12}, \frac{\sqrt{6}-\sqrt{2}}{4}\right) ?$

Use this microscope equation to estimate $\sin \left(\frac{1}{4}\right)$.
5. A Calculus in Context textbook has been dropped from a cliff. Using the table of values given below, make an estimate of the instantaneous velocity of the textbook at time $t=2$ seconds. How many decimal places of accuracy does your estimate exhibit? Justify your answer in writing.

Time	Height
t	$\mathrm{h}(\mathrm{t})$
2.0000	936.00000000
2.0001	935.99359984
2.0010	935.93598400
2.0100	935.35840000
2.1000	929.44000000
3.0000	856.00000000

6. Consider the equation $y^{2}+x y-x^{2}=5$.
(a) Explain why there is no derivative function $f^{\prime}(x)$ for the equation above.
(b) Find $\frac{d y}{d x}$ at the point $(1,2)$ and also at the point $(1,-3)$.
7. Show that the function $g(x)=2 x+\sin (x)$ is one-to-one and compute $\left[g^{-1}\right]^{\prime}(4 \pi)$.
8. Find the inverse function $f^{-1}(x)$ for the function $f(x)=x^{2}-3$ on the interval $[0,+\infty)$ and indicate the domain of $f^{-1}(x)$.
9. Find the following limits (if they exist):
(a) $\lim _{x \rightarrow 0+} x^{x^{x}}$
(b) $\lim _{x \rightarrow 1} \frac{1-x^{3}}{1-x}$ (c) $\lim _{x \rightarrow \infty} 5^{x}-2^{x}$
(d) $\lim _{x \rightarrow 0-} \frac{.00001}{x^{2}}-\frac{10000}{x}$ (e) $\lim _{x \rightarrow 0+} \frac{.00001}{x^{2}}-\frac{10000}{x}$
10. Below is a simple polynomial function and its first two derivatives (in factored form)

$$
\begin{aligned}
f(x) & =x^{4}-4 x^{3}+16 x \\
f^{\prime}(x) & =4(x+1)(x-2)^{2} \\
f^{\prime \prime}(x) & =12 x(x-2)
\end{aligned}
$$

(a) Determine on what intervals the function $f(x)$ is increasing.
(b) Determine where the function $f(x)$ has relative extrema.
(c) Determine on what intervals the function $f(x)$ is concave down.
(d) Determine where the function $f(x)$ has points of inflection.
(e) One of the x-intercepts of the function $f(x)$ is $x=0$. The other one lies between -2 and -1. Use Newton's Method with an initial guess of $x_{1}=-2$ to find the other intercept to two decimal places.
(f) Graph the function $f(x)$ below, labeling your scale and all important points (intercepts, extrema, points of inflection, etc.).

11. A woman 1.8 meters tall walks at a rate of 1.2 meters per second away from a lamp which is 3 meters above the ground (see the figure). When she is 4 meters from the base of the lamp, at what rate is the tip of her shadow moving along the ground?
12. Consider the Initial Value Problem (IVP)

$$
\begin{aligned}
C^{\prime} & =-2 C \\
C(0) & =1
\end{aligned}
$$

(a) Use Euler's method with a time step of $\Delta t=\frac{1}{10}$ to fill in the empty boxes in the table below and find an estimate of $C\left(\frac{1}{3}\right)$.

t	C	C^{\prime}	ΔC
0	1	XXXXXXXX XXXXXXXX XXXXXXXX	XXXXXXXX XXXXXXXX XXXXXXXX
0.1	$\frac{4}{5}$		
0.2			
0.3			
0.4	$\frac{256}{625}$	XXXXXXXX XXXXXXXX XXXXXXXX	XXXXXXXXX XXXXXXXX

(b) Verify that $c(x)=e^{-2 t}$ is the solution to the IVP above. Show all of your work. Then use your calculator to compute $c\left(\frac{1}{3}\right)$.
13. Sketch a possible derivative function for the function below.

14. Determine if the function $h(x)=\frac{3 x^{2}+1}{2 x^{2}-x}$ has any vertical or horizontal asymptotes by evaluating the appropriate limits. If it does have vertical or horizontal asymptotes, give the equations for those asymptotes.
15. On the interval $[-1,2]$, find the x-values where the global (or absolute) extrema occur for the function $f(x)=x^{4}-4 x^{3}+3 x^{2}$.

