Monday November 19
Single Variable Optimization, Continued

More Optimization Problems

In Groups of 3 or 4, work on the following problems. The ones in bold will be part of the graded homework.
Anton, Bivens \mathfrak{G} Davis $\S 5.5$: 16, 21, 24, 25, 26, 36, 43, 44, 55, 57.
GROUP 1
Anton, Bivens $\xi^{\mathcal{J}}$ Davis, Page 319, Question 21. A closed rectangular container with a square base is to have a volume of $2000 \mathrm{~cm}^{3}$. It costs twice as much per square centimeter for the top and bottom as it does for the sides. Find the dimension of the container of least cost.

GROUP 2

Anton, Bivens 8 Davis, Page 319, Question 25. Find the dimensions of the right circular cylinder of greatest surface area that can be inscribed in a sphere of radius R.

GROUP 3

Anton, Bivens \mathcal{F} Davis, Page 320, Question 36. Find the dimensions of the isosceles triangle of least area that can be circumscribed about a circle of radius R.

GROUP 4

Anton, Bivens ξ^{3} Davis, Page 320, Question 44. A firm determines that x units of is product can be sold daily at p dollars per unit, where $x=1000-p$. The cost of producing x units per day is $C(x)=3000+20 x$.
(a) Find the revenue function $R(x)$.
(b) Find the profit function $P(x)$.
(c) Assuming that the production capacity is at most 500 units per day, determine how many units the company must produce and sell each day to maximize the profit.
(d) Find the maximum profit.
(e) What price per unit must be charged to obtain the maximum profit.

GROUP 5

Anton, Bivens $8 \mathcal{F}$ Davis, Page 321, Question 55. Find the coordinates of the point P on the curve $y=\frac{1}{x^{2}}(x>0)$ where the segment of the tangent line at P that is cut off by the coordinate axes has its shortest length.

GROUP 6

Anton, Bivens \mathcal{E} Davis, Page 321, Question 57. Where on the curve $y=\left(1+x^{2}\right)^{-1}$ does the tangent line have the greatest slope?

