L'Hôpital's Rule and Exotic Indeterminate Forms

THEOREM: L'Hôpital's Rule

If the limit on the left has an indeterminate form (i.e. $\frac{0}{0}, \frac{ \pm \infty}{ \pm \infty}$ or $\pm \infty \cdot 0$) then it is equal to the limit on the right (if this limit exists)

$$
\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow b} f^{\prime}(x)}{\lim _{x \rightarrow b} g^{\prime}(x)} \quad \text { (L'Hôpital's Rule) }
$$

It is very likely that the second limit may also have an indefinite form so L'Hôpital's Rule is often applied many many times repeatedly before a definitive value of the limt is obtained.

EXAMPLE

Take the following limits by first identifying which indeterminate form they take and then apply L'Hopital's Rule.

1. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}$
3. $\lim _{x \rightarrow 1}(x-1)^{3} \ln (x-1)$
4. $\lim _{x \rightarrow 0} \frac{\cos (x)-1+\frac{1}{2} x^{2}}{\sin (x)-x}$

By using this new rule we can find the limits of a whole bunch of new functions, and we have another way to find horizontal asymptotes of rational functions functions.
Exercise

1. $\lim _{x \rightarrow \infty} \frac{5+5 x}{3 x-2}$
2. $\lim _{x \rightarrow-\infty} \frac{5+5 x}{3 x-2}$

What is the limit $\lim _{x \rightarrow 0+} x^{x}=$? Let's first answer some easier questions.
(a) $0^{1}=$
$0^{0.1}=$
$0^{0.01}=$
$0^{0.001}=$
(b) $1^{0}=$
$0.1^{0}=$
$0.01^{0}=$
$0.001^{0}=$
(c) $0^{0}=$

So what can we conclude about $\lim _{x \rightarrow 0+} x^{x}$?
(d) $1^{1}=$
$0.1^{0.1}=$
$0.01^{0.01}=$
$0.001^{0.001}=$

So what can we conclude about $\lim _{x \rightarrow 0+} x^{x}$?
Here's a solution for finding the answer without using a calculator and a table of values.:
(e) Warm-up: $e^{\ln (182)}=$

So $e^{\ln \left(x^{x}\right)}=$
Step 1. Write x^{x} as $e^{\text {something }}$:
Simplify: $\ln \left(x^{x}\right)=\quad$ So $x^{x}=e^{\ln \left(x^{x}\right)}=$
So finding $\lim _{x \rightarrow 0+} x^{x}$ is the same as finding \qquad .
Step 2. $\lim _{x \rightarrow 0+} x \ln (x)=$
Step 3. $\lim _{x \rightarrow 0+} e^{x \ln (x)}=$

Exotic Indeterminate Forms: The following are also indeterminate forms $\infty^{0}, 1^{0}, 1^{\infty}, 0^{\infty}$ and 0^{0}.
These indeterminate forms require another approach before we can apply L'Hôpital's Rule. The following theorem is often helpful.

THEOREM

IF $f(x)>0$, THEN $f(x)^{g(x)}=e^{\ln \left(f(x)^{g(x)}\right)}=e^{g(x) \ln (f(x))}$.
In this case, $\lim _{x \rightarrow a} f(x)^{g(x)}=\lim _{x \rightarrow a} e^{g(x) \ln (f(x))}=e^{\lim _{x \rightarrow a} g(x) \ln (f(x))}$.

Exercise

Use the above to find $\lim _{x \rightarrow 0}(1+x)^{1 / x}$.
Step 1. Write $(1+x)^{1 / x}$ as $e^{\text {something }}$.

Step 2.

Step 3.

