Derivatives of Inverse Functions

EXAMPLE

Given two functions $f(x)$ and $g(x)$ which have the relationship that $f(g(x))=x$ and $g(f(x))=x$ use the Chain Rule to show that $f^{\prime}(g(x))=\frac{1}{g^{\prime}(x)}$ and $g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$. What is a word that we could use to describe $f(x)$ and $g(x)$?

Derivative of the Inverse Function

If $g=f^{-1}$, then $x=f(g(x))$. In the usual notation for inverse functions,

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}, \quad \text { provided } f^{\prime}\left(f^{-1}(x)\right) \neq 0 .
$$

Graphical Approach

The graph of f^{-1} is the reflection of the graph of f about the line $y=x$.
The line tangent to the graph of f^{-1} at (d, c) is the reflection across the line $y=x$ of the line tangent to the graph of f at (c, d).
If $(d, c) \neq(b, a)$ is on the line tangent to the graph of f^{-1} at (d, c), then $(c, d) \neq(a, b)$ is on the line tangent to the graph of f at (c, d).

The derivative of f^{-1} at b can then be computed as the slope of the line tangent to the graph of f^{-1} at (b, a) :

$$
\left(f^{-1}\right)^{\prime}(d)=\frac{c-a}{d-b}=1 /\left(\frac{d-b}{c-a}\right)=1 / f^{\prime}(c)
$$

the reciprocal of the slope of the line tangent to the graph of f at (c, d).

Another View Another way of thinking about this result is if $y=f^{-1}(x)$ then by definition of inverses $x=f(y)$.

$$
\frac{d y}{d x}=\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}=\frac{1}{\left.f^{\prime}(y)\right)}=\frac{1}{\frac{d x}{d y}}
$$

EXAMPLE

Let's demonstrate the above result with $f(x)=x^{3}+1$.

THEOREM: monotonically increasing/decreasing functions are invertible

A function $f(x)$ that has a derivative $f^{\prime}(x)$ which is either always positive or always negative for every value in the domain of $f(x)$ is said to be monotonically increasing (when $f^{\prime}>0$) or monotonically decreasing (when $f^{\prime}<0$). Monotonically increasing functions are one-to-one (invertible) functions and their inverse functions f^{-1} are differentiable at every value in the range of $f(x)$.
GROUPWORK
Consider $f(x)=x^{5}+x+1$.

1. Show that f is one-to-one on the interval $(-\infty, \infty)$.
2. Show that f^{-1} is differentiable on the interval $(-\infty, \infty)$.
3. Find a formula for f^{-1} using implicit differentiation
4. Find a formula f^{-1} using another method
