EXAMPLE

Given two functions f(x) and g(x) which have the relationship that f(g(x)) = x and g(f(x)) = xuse the Chain Rule to show that $f'(g(x)) = \frac{1}{g'(x)}$ and $g'(f(x)) = \frac{1}{f'(x)}$. What is a word that we could use to describe f(x) and g(x)?

Derivative of the Inverse Function

If $g = f^{-1}$, then x = f(g(x)). In the usual notation for inverse functions,

$$\frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))}, \text{ provided } f'(f^{-1}(x)) \neq 0.$$

Graphical Approach

The graph of f^{-1} is the reflection of the graph of f about the line y = x. The line tangent to the graph of f^{-1} at (d, c) is the reflection across the line y = x of the line tangent to the graph of f at (c, d).

If $(d, c) \neq (b, a)$ is on the line tangent to the graph of f^{-1} at (d, c), then $(c, d) \neq (a, b)$ is on the line tangent to the graph of f at (c, d).

The derivative of f^{-1} at b can then be computed as the slope of the line tangent to the graph of f^{-1} at (b, a):

$$(f^{-1})'(d) = \frac{c-a}{d-b} = 1 / \left(\frac{d-b}{c-a}\right) = 1/f'(c),$$

the reciprocal of the slope of the line tangent to the graph of f at (c, d).

Math 110

Another View Another way of thinking about this result is if $y = f^{-1}(x)$ then by definition of inverses x = f(y).

$$\frac{dy}{dx} = \frac{d}{dx}f^{-1}(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{f'(y)} = \frac{1}{\frac{dx}{dy}}$$

EXAMPLE

Let's demonstrate the above result with $f(x) = x^3 + 1$.

THEOREM: monotonically increasing/decreasing functions are invertible

A function f(x) that has a derivative f'(x) which is either always positive or always negative for every value in the domain of f(x) is said to be monotonically increasing (when f' > 0) or monotonically decreasing (when f' < 0). Monotonically increasing functions are one-to-one (invertible) functions and their inverse functions f^{-1} are differentiable at every value in the range of f(x).

 $\begin{array}{|c|c|}\hline GROUPWORK\\ \hline Consider \ f(x) = x^5 + x + 1. \end{array}$

1. Show that f is one-to-one on the interval $(-\infty, \infty)$.

- 2. Show that f^{-1} is differentiable on the interval $(-\infty, \infty)$.
- 3. Find a formula for f^{-1} using implicit differentiation
- 4. Find a formula f^{-1} using another method