## THEOREM

When $f(x)=b^{x}, f^{\prime}(x)=b^{x} \ln (b)$. When $b=e, f\left({ }^{\prime} x\right)=f(x)=e^{x}$ since $\ln (e)=1$.

## GroupWork

Let's understand this result by annotating the following proof of the result. Next to each line of the following steps, write down what mathematical operations have occurred.

$$
\begin{aligned}
y & =b^{x} \\
\log _{b}(y) & =\log _{b}\left(b^{x}\right) \\
\log _{b}(y) & =x \\
\frac{1}{y \ln (b)} \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =y \ln (b) \\
\frac{d y}{d x} & =b^{x} \ln (b)
\end{aligned}
$$

NOTE: when $b=e$ (the base of the natural logarithms), $\frac{d}{d x} e^{x}=e^{x}$.

## EXAMPLE

Let's evaluate the following derivatives

1. Evaluate $\frac{d}{d x}\left[\pi^{x}\right]$.
2. $f(x)=\sin \left(e^{x}\right)$, find $f^{\prime}(x)$.
3. Evaluate $\frac{d}{d x}\left[e^{\cos (x)}\right]$
4. Evaluate $\frac{d}{d x}\left[2^{x} x^{2}\right]$

## CLICKER QUESTION

If $\sqrt{e}$ is approximated by using the tangent line to the graph of $f(x)=e^{x}$ at $(0,1)$ and we know $f^{\prime}(0)=1$, the approximation is
(a) 0.5
(b) $1+e^{0.5}$
(c) $1+0.5$
(d) $1+e$

## CLICKER QUESTION

The slope of the line tangent to the graph of $x=\sin (y)$ at the point $(0, \pi)$ is
(a) 1
(b) -1
(c) not defined
(d) impossible to be determined

## CLICKER QUESTION

If $f$ and $g$ are both everywhere differentiable and $h=f \circ g, h^{\prime}(2)$ equals
(a) $f^{\prime}(2) \circ g^{\prime}(2)$
(b) $f^{\prime}(2) g^{\prime}(2)$
(c) $f^{\prime}(g(2)) g^{\prime}(2)$
(d) $f^{\prime}(g(x)) g^{\prime}(2)$

## CLICKER QUESTION

TRUE or FALSE: $\frac{d}{d x} \ln (\pi)=\frac{1}{\pi}$
(a) True.
(b) False.

## CLICKER QUESTION

TRUE or FALSE: "There is exactly one function whose derivative equals itself."
(a) True.
(b) False.

## CLICKER QUESTION

TRUE or FALSE: "IF $f(x)$ is an even function, THEN $f^{\prime}(x)$ is an odd function."
(a) True.
(b) False.

