BASIC CALCULUS I Class 22 Friday October 26 Differentiation of Logarithmic Functions

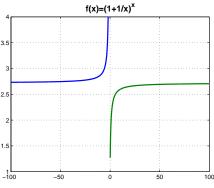
Taking the limit of a function f(x) as its input increases without bound **positively** $(x \to +\infty)$ is identical to taking the limit of f(1/x) as x approaches zero from the right $(x \to 0^+)$. Similarly, Taking the limit of a function f(x) as its input increases without bound **negatively** $(x \to +\infty)$ is identical to taking the limit of f(1/x) as x approaches zero from the left $(x \to 0^-)$. Mathematically, we can write this as

$$\lim_{x \to \infty} f(x) = \lim_{x \to 0^+} f(1/x) \text{ and } \lim_{x \to -\infty} f(x) = \lim_{x \to 0^-} f(1/x)$$

This means that when $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = L$ we also know $\lim_{x \to 0} f(1/x) = L$

This is a very useful result because it allows us to swap an infinite limit (which might be hard to compute) for a limit to a finite number (zero!) which could be easier to compute.

Consider the function $f(x) = (1 + \frac{1}{x})^x$. It turns out that the graph of f(x) possesses the horizontal asymptote $y = e \approx 2.7182818...$ as $x \to +\infty$ and $x \to -\infty$



EXAMPLE

We can use this information to show that $\lim_{t\to 0} (1+t)^{1/t} = e$.

We can use this limit result plus the limit definition of the derivative to evaluate $\frac{d}{dx}[\ln(x)]$.

THEOREM
When
$$f(x) = \ln(x)$$
, $f'(x) = \frac{1}{x}$, $x > 0$ and when $f(x) = \log_b(x)$, $f'(x) = \frac{1}{x \ln(b)}$, $x > 0$
Exercise
Evaluate $\frac{d}{dx} \ln(x^2 + 1)$ and $\frac{d}{dx} x^2 \ln(5x)$

Math 110

EXAMPLE Let's prove that $\frac{d}{dx} \ln |x| = \frac{1}{x}, x \neq 0$ by considering two cases, x > 0 and x < 0.

Logarithmic Differentiation

The technique of logarithmic differentiation is used when an function y = f(x) has a lot of products, powers and quotients so that $\ln y = \ln(f(x))$ is actually easier to differentiate (as long as we also then use the Chain Rule).

Suppose $y = x^r$ where r is **any** real number. Let's use logarithmic differentiation to prove $(x^r)' = rx^{r-1}$.

GROUPWORK 1. Evaluate $\frac{d}{dx}[x^{\pi}]$.

2.
$$f(x) = \frac{\sin(x)}{x^{\sqrt{2}}}$$
, find $f'(x)$.

3. Evaluate (a)
$$\lim_{h \to 0} \frac{\ln(\cos(h))}{h}$$
 and (b) $\lim_{w \to 1} \frac{\ln(w)}{w-1}$

4. Anton, Bivens & Davis, Question 4.2.37 Find $\frac{d}{dx}[\log_x e]$ and $\frac{d}{dx}[\log_x 2]$.