Implicit Differentiation

Definition: implicit function

An equation in x and y variables of the form $F(x, y)=0$ is said to define the function f implicitly if the graph of $y=f(x)$ coincides with some portion of the graph of the equation $F(x, y)=0$.

What would such an implicitly defined function look like? Are these functions rare?

EXAMPLE

Consider the equation $x^{2}+y^{2}=1$. What does the graph of this equation look like? Is this an implicitly defined function?

Exercise

(a) Solve the equation $8 x^{3}+2 y^{5}=1$ for x in terms of y.
(b) Now solve the same equation for y in terms of x.
(c) Is x a function of y or is y a function of x ?

We say the equation $8 x^{3}+2 y^{5}=1$ gives x implicitly as a function of \qquad , while the equation $x=(1 / 2) \sqrt[3]{1-2 y^{5}}$ gives x \qquad as a function of y.
Similarly, we say the equation $8 x^{3}+2 y^{5}=1$ gives y implicitly as a function of \qquad , while the equation $y=$ \qquad gives y explicitly as a function of x

Interpreting Implicit Differentiation As Related Rates Of Change

To understand the MEANING of implicit differentiation in terms of rates of change, fill in the following blanks.

$$
\frac{d}{d y}\left[y^{3}\right]=
$$

So, at $\mathbf{y}=2$, the rate of change of y^{3} is \qquad .
This means increasing y by 1 unit causes $\overline{y^{3}}$ to increase by \qquad units.
Now, suppose y is a function of x. And suppose $\frac{d y}{d x}=5$.
This means increasing x by 1 unit causes y to increase by \qquad units, which in turn causes y^{3} to increase by \qquad units.
Implicit differentiation says exactly the same thing:

$$
\frac{d}{d x}\left[y^{3}\right]=
$$

Note this is identical to central concept of the Chain Rule, i.e. when $u=f(y)$, and $y=g(x)$ $\frac{d u}{d x}=\frac{d u}{d y} \frac{d y}{d x}$

EXAMPLE

(a) Can you solve the equation $x^{2}+y^{3}=8-x+x y^{5}$ for y in terms of x ?
(b) When $x=0, y=$
(c) Surprising fact: We can find the slope of the graph at $x=0$! (as follows)

Implicitly differentiate the above equation with respect to x, i.e., apply $\frac{d}{d x}$ to both sides of the equation.

Now plug in $x=0$ and $y=_$, and then solve for $\frac{d y}{d x}$.

Exercise

Find the equation of the tangent line to the graph of $x^{2}+y^{3}=8-x+x y^{5}$ at $x=0$.

Extending The Power Rule To Rational Powers

Suppose $y=x^{r}$ where r is a rational number, i.e. $r=m / n$ where m and n are integers. We can use implicit differentiation to show that $\left(x^{r}\right)^{\prime}=r x^{r-1}$. (HINT: $y=x^{m / n} \Leftrightarrow y^{n}=x^{m}$)

