Trigonometric Functions and the Chain Rule

EXAMPLE

Recall two standard limits that we learned way back in Class 12

$$
\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1 \text { and } \lim _{h \rightarrow 0} \frac{1-\cos (h)}{h}=0
$$

Now that we know the limit definition of the derivative (and recalling $\cos (0)=1$ and $\sin (0)=0$) we can re-write these limits as

$$
\lim _{h \rightarrow 0} \frac{\sin (h)-\sin (0)}{h}=1 \text { and } \lim _{h \rightarrow 0} \frac{-\cos (h)-(-\cos (0))}{h}=0
$$

Compare these limits to: $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
Each of our initial two limits can be written as the derivative of what function $f(x)$ evaluated at what point a ?
$\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=$ \qquad and $\lim _{h \rightarrow 0} \frac{1-\cos (h)}{h}=$ \qquad

Exercise

Consider the following graph of a function $f(x)$ and its derivative $f^{\prime}(x)$. Can you identify which graph is $f(x)$ and which is $f^{\prime}(x)$?

THEOREM: Derivatives of Trigonometric Functions

Here are some derivatives we need to know
(a) $\frac{d}{d x}[\sin (x)]=\cos (x)$
(b) $\frac{d}{d x}[\cos (x)]=-\sin (x)$
(c) $\frac{d}{d x}[\tan (x)]=\sec ^{2}(x)$
(d) $\frac{d}{d x}[\cot (x)]=-\csc ^{2}(x)$
(e) $\frac{d}{d x}[\sec (x)]=\sec (x) \tan (x)$
(f) $\frac{d}{d x}[\tan (x)]=-\csc (x) \cot (x)$

EXAMPLE

We can reproduce any one of the formulas (c)-(f) by using (a) and (b) and various Derivative Rules.

THEOREM: Chain Rule

IF g is differentiable at x and f is differentiable at $g(x)$ THEN the composition of f and $g, f \circ g$, is differentiable at x and given by $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x)$
The Chain Rule is often written as

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

where $u=g(x)$ so that $y=(f \circ g)(x)=f(g(x))=f(u)$
The Chain Rule is the most important of the derivative rules that we have learned so far because it applies to so many different functions and situations.

EXAMPLE

Evaluate $\frac{d}{d x}\left[\sqrt{x^{3}+2 x+7}\right]$.

Grouphork

Consider $f_{1}(x)=\sin \left(x^{2}\right), f_{2}(x)=\sin ^{2}(x)$, and $f_{3}(x)=\sin (x) x^{2}$. Find the derivatives of each function and state what derivative rule(s) you are using in each case.

Notice how "similar" each of the functions f_{1}, f_{2} and f_{3} are but how different their derivatives are.

