The Product Rule

If $f^{\prime}(x)$ and $g^{\prime}(x)$ exist then the derivative of the product $f(x) \cdot g(x)$ exists and is given by the formula $\frac{d}{d x}[f(x) g(x)]=\frac{d}{d x}[f(x)] g(x)+f(x) \frac{d}{d x}[g(x)]$

EXAMPLE

We can prove the Product Rule by using the limit definition of the derivative and some algebra.

The Quotient Rule

If $f^{\prime}(x)$ and $g^{\prime}(x)$ exist then the derivative of the quotient $\frac{f(x)}{g(x)}$ exists and is given by the formula $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}[f(x)]-f(x) \frac{d}{d x}[g(x)]}{[g(x)]^{2}}$ (We will not prove the quotient rule, but the textbook does, on page 200-201.)

Exercise

Use the Quotient Rule to show the derivative $\frac{d}{d x}\left[\frac{1}{g(x)}\right]=-\frac{g^{\prime}(x)}{[g(x)]^{2}}$

EXAMPLE

We'll use the above rule (sometimes called the Reciprocal Rule) combined with the Product Rule to generate the Quotient Rule.

GROUPWORK

1. Evaluate $\frac{d}{d x}\left[\left(4-x^{3}\right)\left(x^{2}+x-1\right)\right]$.
2. $f(x)=\left[\frac{3 x+4}{x^{2}+1}\right]$, find $f^{\prime}(x)$.
3. Evaluate $D_{x}^{4}\left[x^{-2}+x^{9}\right]$
4. Anton, Bivens $\S \mathcal{B}$ Davis, Question 3.4.30.

Find all values of a such that the curves $y=a /(x-1)$ and $y=x^{2}+2 x+1$ intersect at right angles.

