The Product Rule

If f'(x) and g'(x) exist then the derivative of the product $f(x) \cdot g(x)$ exists and is given by the formula $\frac{d}{dx}[f(x)g(x)] = \frac{d}{dx}[f(x)]g(x) + f(x)\frac{d}{dx}[g(x)]$

EXAMPLE

We can prove the Product Rule by using the limit definition of the derivative and some algebra.

The Quotient Rule

If f'(x) and g'(x) exist then the derivative of the quotient $\frac{f(x)}{g(x)}$ exists and is given by the formula $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$ (We will not prove the quotient rule, but the textbook does, on page 200-201.) **Exercise** Use the Quotient Rule to show the derivative $\frac{d}{dx} \left[\frac{1}{g(x)} \right] = -\frac{g'(x)}{[g(x)]^2}$

EXAMPLE

We'll use the above rule (sometimes called **the Reciprocal Rule**) combined with the Product Rule to generate the Quotient Rule.

Math 110

GROUPWORK
1. Evaluate
$$\frac{d}{dx}[(4-x^3)(x^2+x-1)].$$

2.
$$f(x) = \left[\frac{3x+4}{x^2+1}\right]$$
, find $f'(x)$.

3. Evaluate
$$D_x^4 \left[x^{-2} + x^9 \right]$$

4. Anton, Bivens & Davis, Question 3.4.30. Find all values of a such that the curves y = a/(x-1) and $y = x^2 + 2x + 1$ intersect at right angles.