THEOREM: Differentiability Implies Continuity

IF a function $f(x)$ is differentiable at a point a THEN $f(x)$ is continuous at a.
This means that of $f^{\prime}(a)$ exists, then $f(a)$ must exist and $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)$.
The contrapositive of a theorem is (always) also true: IF $f(x)$ is NOT continuous at a, THEN $f(x)$ is NOT differentiable at a.

1. Local Linearity

If the graph of a function at a point $x=a$ appears to look more and more like a line with finite slope when you zoom in on the point $(a, f(a))$ then the function is said to be locally linear. IF a function is locally linear at a point, THEN it is differentiable at that point. ALSO, IF a function is differentiable at a point, THEN it is locally linear at that point.

2. Notations for The Derivative Function

So far we have been using the notation $f^{\prime}(x)$ to mean the function which outputs the instantaneous rate of change or derivative of f with respect to x.
If one thinks of the function $f(x)$ as an object then we can think of differentiation as an operation that is applied to the function $f(x)$ which produces a new function, the derivative of $f(x)$.

Often the notation $D_{x}[f(x)]$ or $\frac{d}{d x}[f(x)]$ to denote the derivative function. D_{x} and $\frac{d}{d x}$ are called the differentaion operator.
The relationship between the output (dependent) variable y and the input (independent) variable x is often represented as $y=f(x)$. In that case one can denote the derivative of y with respect to x as $\frac{d y}{d x}$ or $y^{\prime}(x)$.

3. Notations for The Value Of The Derivative At A Point

Unfortunately, the notation for the value of the derivative of a function $f(x)$ with respect to x at a point a can get quote cumbersome. The most elegant notation is what we have been using, which is $f^{\prime}(a)$. However, the following notations are all equivalent:

$$
f^{\prime}(a)=\left.\frac{d}{d x}[f(x)]\right|_{x=a}=\left.D_{x}[f(x)]\right|_{x=a}=\left.\frac{d y}{d x}\right|_{x=a}=y^{\prime}(a)
$$

They all mean the value of the derivative at the point $x=a$ and are equal to the slope of the tangent line to the graph of the function $f(x)$ at $x=a$.

4. Formula for Equation of a Tangent Line

The formula for the equation of the tangent line to a function at $x=a$ is $y=f(a)+f^{\prime}(a)(x-a)$.
Let's summarize the derivative functions we currently know (In each case write down an example of a function of the appropriate type and its corresponding derivative):

5. Derivative Of A Constant Function

The derivative of a constant function is zero; i.e. when $f(x)=c, f^{\prime}(x)=0$

6. Derivative Of A Linear Function

The derivative of a linear function is constant; it equals the slope of the line. When $f(x)=m x+b$, $f^{\prime}(x)=m$

7. Derivative Of A Power Function

When $f(x)=x^{n}$ where n is an integer, $f^{\prime}(x)=n x^{n-1}$. This is known as The Power Rule.
EXAMPLE
We shall find the derivative of $y=x^{n}$ where n is a positive integer, algebraically.

8. Basic Derivative Rules
 THEOREM

(a) The derivative of a constant multiple of a function is a constant multiple of the derivative function
$\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]$
(b) The derivative of the sum of two function is the sum of the derivative functions $\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]$
(c) The derivative of the difference of two function is the difference of the derivative functions
$\frac{d}{d x}[f(x)-g(x)]=\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]$
Exercise
Find $\frac{d y}{d x}$, given $y=x^{7}-6 x^{3}+4 x-16^{2}+2 x^{-5}$

GROUPWORK

At what points, if any, does the graph of $y=x^{3}-3 x+4$ have a horizontal tangent line?

9. Higher Derivatives

Since the derivative function f^{\prime} is itself a function one can also find its derivative. This new function is called the second derivative of f and can be denoted $f^{\prime \prime}$. This process can be repeated as often as desired. The number of times a function has been differentiated is called the order of the derivative.

$$
f^{(n)}(x)=\frac{d^{n} y}{d x^{n}}=\frac{d^{n}}{d x}[f(x)], \quad y^{\prime \prime}=\frac{d}{d x}\left[y^{\prime}\right] \text { and } y^{(3)}=\left(y^{\prime \prime}\right)^{\prime}
$$

