BASIC CALCULUS I *Class 14* Wednesday October 3 Introducing The Derivative

DEFINITION: Derivative

The slope of a function f(x) at a point x = a is also called **the derivative** of f(x) at x = a. This is denoted by the symbols f'(a).

EXAMPLE

Let $f(x) = x^2 - 1$.

1. f(2) =

2. Use the table below to estimate the derivative of $f(x) = x^2 - 1$ at x = 2.

x	f(x)	x-2	f(x) - f(2)	estimate for derivative
1				
1.5				
1.9				
1.99				
1.999				
1.999				

So, the DERIVATIVE of $f(x) = x^2 - 1$ at x = 2 is EXACTLY

The mathematical way of abbreviating this long sentence is:

3. There is also a third name for *slope* and *derivative*:

So we denote the derivative of f at x = 2 by the symbols _____.

Note:

 $\frac{f(x) - f(2)}{x - 2}$ is called the _____ rate of change of f over the interval _____,

while

 $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$ is called the _____ rate of change of f at _____.

Exercise

Let's find the EXACT slope (derivative) of $f(x) = x^2 - 1$ at x = 2.

Step 1. Simplify the difference quotient.

$$\frac{f(x) - f(2)}{x - 2} =$$

Step 2. "Take the limit."

What happens to your answer in Step 1 as x gets closer and closer to 2?

We write:
$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} x + 2 =$$

DEFINITION: Tangent Line

The tangent line to the graph of f at any point (a, f(a)) exists if f'(a) exists, and the slope of this *tangent line* has the value f'(a).

Exercise

Find the slope of the line tangent to the graph of $f(x) = 3x^2$ at x = 1. Step 1. Simplify.

Step 2. Take the limit.

GROUPWORK

4. Consider a graph of the parabola $f(x) = 3x^2$.

- (a) Find the equation of the line tangent to the graph of the parabola at (1, f(1)).
- (b) On your graph, draw the tangent line at x = 1.
- (c) On the same graph, draw a line whose slope is "represented" by [f(1) f(.5)]/[1 .5].

(d) Without doing any computations, can you tell which is larger: the average rate of change of

f on the interval [.5, 1], or the instantaneous rate of change of f at x = 1? Explain your answer.

