DEFINITION: Derivative

The slope of a function $f(x)$ at a point $x=a$ is also called the derivative of $f(x)$ at $x=a$. This is denoted by the symbols $f^{\prime}(a)$.

EXAMPLE

Let $f(x)=x^{2}-1$.

1. $f(2)=$
2. Use the table below to estimate the derivative of $f(x)=x^{2}-1$ at $x=2$.

x	$f(x)$	$x-2$	$f(x)-f(2)$	estimate for derivative
1				
1.5				
1.9				
1.99				
1.999				

So, the DERIVATIVE of $f(x)=x^{2}-1$ at $x=2$ is EXACTLY

The mathematical way of abbreviating this long sentence is:
3. There is also a third name for slope and derivative:

So we denote the derivative of f at $x=2$ by the symbols \qquad .

Note:
$\frac{f(x)-f(2)}{x-2}$ is called the \qquad rate of change of f over the interval \qquad ,
while
$\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}$ is called the \qquad rate of change of f at \qquad .

Exercise

Let's find the EXACT slope (derivative) of $f(x)=x^{2}-1$ at $x=2$.
Step 1. Simplify the difference quotient.
$\frac{f(x)-f(2)}{x-2}=$

Step 2. "Take the limit."
What happens to your answer in Step 1 as x gets closer and closer to 2 ?

We write: $\lim _{x \rightarrow 2} \frac{f(x)-f(2)}{x-2}=\lim _{x \rightarrow 2} x+2=$

DEFINITION: Tangent Line
The tangent line to the graph of f at any point $(a, f(a))$ exists if $f^{\prime}(a)$ exists, and the slope of this tangent line has the value $f^{\prime}(a)$.
Exercise
Find the slope of the line tangent to the graph of $f(x)=3 x^{2}$ at $x=1$.
Step 1. Simplify.

Step 2. Take the limit.

GroupWork

4. Consider a graph of the parabola $f(x)=3 x^{2}$.
(a) Find the equation of the line tangent to the graph of the parabola at $(1, f(1))$.
(b) On your graph, draw the tangent line at $x=1$.
(c) On the same graph, draw a line whose slope is "represented" by $[f(1)-f(.5)] /[1-.5]$.
(d) Without doing any computations, can you tell which is larger: the average rate of change of f on the interval $[.5,1]$, or the instantaneous rate of change of f at $x=1$? Explain your answer.

