An informal definition of continuity of a function is that if it's graph can be drawn without picking up your drawing implement, then it is continuous at all the iput values that are graphed.

## DEFINITION: Continuity at a point

A function $f(x)$ is said to be continuous at a point $x=a$ if ALL of the following statements are true:

1. $f(a)$ is defined
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

If a function is not continuous at a point we say that it has a discontinuity at $x=a$.
EXAMPLE
Let's think about the different ways that this defnition can fail for a function:

1. $f(x)$ may be undefined at the point $x=a$
2. The value of $f(a)$ and the value of the limit of $f(x)$ as $x$ approaches $a$ may be different
3. The limit of $f(x)$ as $x$ approaches $a$ may not exist because the one sided limits are different
4. The limit of $f(x)$ as $x$ approaches $a$ may not exist for other reasons than those given in (3)

## GROUPWORK

Let's provide algebraic examples of functions which correspond to each of the "Discontinuity Scenarios" described above and draw a picture of each of the scenarios which depict the way a function can be discontinous at a apoint.

## DEFINITION: Continuity on an open interval

If a function $f(x)$ is continuous at every point in an open interval $(a, b)$ we say that $f(x)$ is continuous on the interval $(a, b)$. If $f(x)$ is continuous at every point in the interval $(-\infty, \infty)$ we say that $f(x)$ is continuous everywhere.

## Examples of Everywhere Continuous Functions

One very nice feature of polynomials was that $\lim _{x \rightarrow a} p(x)=p(a)$. This means that polynomial functions are continuous everywhere.
Q: Can you think of at least three other families of functions which are continuous everywhere?
A: $\qquad$

## Rational Functions

A rational function $\frac{p(x)}{q(x)}$ is continuous at every point at which the denominator function $q(x)$ is NOT equal to zero, and possesses discontinuities at al the points where $q(x)=0$.

## Exercise

For what values of $x$ is the function $f(x)=\frac{x^{2}-9}{x^{2}-5 x+6}$ continuous? Express your answer using interval notation.

## Continuity of Composite Functions

## THEOREM

If a function $g(x)$ is continuous at a point $x=a$ such that $\lim _{x \rightarrow a} g(x)=g(a)$ and a function $f(x)$ is continuous at the point $x=g(a)$ then $\lim _{x \rightarrow a} f(g(x))=f(g(a))$.
This is a very important theorem because it means that when taking the limit of a composite function one can "bring in" the limit process from the outer function to the inner function, i.e.

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(g(a))
$$

This Theorem is of course most useful for functions which are continuous everywhere, which results in the following correspnding theorem: If $f$ and $g$ are functions that are continuous everywhere, then $f \circ g$ is continuous everywhere.
GROUPWORK
Which are the following functions are continuous everywhere?
$e^{x^{2}},|\sin (x)|, \frac{1}{\cos (x)},\left(x^{5}+6\right)^{8},\left(x^{2}+2 x+1\right)^{-7}, \sqrt{x^{5}+7}$

## CLICKER QUESTION

TRUE or FALSE: At some point in time, you were once exactly 3 feet tall.
(a) TRUE
(b) FALSE

## CLICKER QUESTION

Suppose that during half-time at a basketball game, the score of the home team is 36 points. TRUE or FALSE: At some point in time during the first half, the home team must have had exactly 25 points.
(a) TRUE
(b) FALSE

## CLICKER QUESTION

TRUE or FALSE: At some point in time, your weight in pounds was exactly equal to your height in inches.
(a) TRUE
(b) FALSE

## CLICKER QUESTION

You know that following statement is TRUE: IF $f(x)$ is a polynomial, THEN $f(x)$ is continuous everywhere. Which of the following is also true?
(a) IF $f(x)$ is NOT continuous everywhere, THEN it is not a polynomial
(b) IF $f(x)$ is continuous everywhere, THEN it is a polynomial
(c) IF $f(x)$ is NOT a polynomial, THEN it is NOT continuous
(d) None of the above

## THEOREM

Suppose that the functions $f(x)$ and $g(x)$ are continuous at $x=a$, then
(a) The sum of two functions continuous at a point is continuous at that point:
$f+g$ is continuous at $x=a$.
(b) The difference of two functions continuous at a point is continuous at that point:
$f-g$ is continuous at $x=a$.
(c) The product of two functions continuous at a point is continuous at that point:
$f \cdot g$ is continuous at $x=a$.
(d) The quotient of two functions continuous at a point is continuous at that point:
$f / g$ is continuous at $x=a$ if $g(a) \neq 0$ and $f / g$ has a discontuity at $x=a$ if $g(a)=0$.

## DEFINITION: Continuity on a closed interval

In order to define continuity on a closed interval we have to define the notion of "continuity from the left at a point" and "continuity from the right at a point." A function $f$ is continuous from the right at $x=a$ if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$. A function $f$ is continuous from the left at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$. Then we can say that a function $f(x)$ is continuous on a closed iterval $[a, b]$ if $\stackrel{x \rightarrow a^{-}}{\text {A function }} f(x)$ is said to be continuous at a point $x=a$ if ALL of the following statements are true:

1. $f(x)$ is continuous on the open interval $(a, b)$
2. $f(x)$ is continuous from the right at $x=a$
3. $f(x)$ is continuous from the left at $x=b$

## THEOREM: The Intermediate Value Theorem

If $f(x)$ is continuous on a closed interval $[a, b]$ and $k$ is any number between $f(a)$ and $f(b)$ inclusive, then there is AT LEAST one number $x$ in the interval $[a, b]$ such that $f(x)=k$.
The main way that the Intermediate Value Theorem is used is in proving the following theorem, which is also extremely important.

## THEOREM

If $f(x)$ is continuous on a closed interval $[a, b]$ and $f(a)$ and $f(b)$ are non-zero and have opposite signs, then there is AT LEAST one solution of the equation $f(x)=0$ in the interval $(a, b)$.
Let's draw a picture of this situation. This is a powerful result which allows us to develop algorithms to obtain the root of a function.

