Infinite Limits and Limits at Infinity

DEFINITION: Limits At Infinity

An informal definition of the limit of a function $f(x)$ as x increases without bound is if by taking (input) values of x larger and larger the (output) values of $f(x)$ can be made as close to a number L as desired. Symbolically, this is denoted

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad f(x) \rightarrow L \text { as } x \rightarrow \infty
$$

Graphically, this means that the graph of $y=f(x)$ has a horizontal asymptote at $y=L$. In fact, someetime the behavior of a function as x "goes to" $\pm \infty$ is called the "end behavior" or asymptotic behavior of the function.

CLICKER QUESTION

What is the maximum number of horizontal asymptotes that the graph of a function can have?
(a) One
(b) Two
(c) Three
(d) As Many As We Want

CLICKER QUESTION

What is the maximum number of vertical asymptotes that the graph of a function can have?
(a) One
(b) Two
(c) Three
(d) As Many As We Want

DEFINITION: Infinite Limits

If the output values of $f(x)$ increase without bound (either positively or negatively) as the input values are increased without bound (either positively or negatively) we say that $f(x)$ "goes to infinity" as x "goes to infinity" and this can be written as

$$
\lim _{x \rightarrow \infty} f(x)=+\infty \quad \text { or } \quad f(x) \rightarrow+\infty \text { as } x \rightarrow \infty
$$

or

$$
\lim _{x \rightarrow-\infty} f(x)=+\infty \quad \text { or } \quad f(x) \rightarrow+\infty \text { as } x \rightarrow-\infty
$$

or

$$
\lim _{x \rightarrow \infty} f(x)=-\infty \quad \text { or } \quad f(x) \rightarrow-\infty \text { as } x \rightarrow \infty
$$

or

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty \quad \text { or } \quad f(x) \rightarrow-\infty \text { as } x \rightarrow-\infty
$$

In order to regularly compute limits with infinity we need to be familiar with how to compute some standard infinite limits
THEOREM
Here are some standard limits involving infinity
(a) $\lim _{x \rightarrow \infty} \frac{1}{x}=0$
(b) $\lim _{x \rightarrow-\infty} \frac{1}{x}=0$
(c) $\lim _{x \rightarrow \infty} C=C$, for any constant C
(d) $\lim _{x \rightarrow-\infty} C=C$, for any constant C
(e) $\lim _{x \rightarrow \infty} b^{x}=\infty$ for any $b>0$
(f) $\lim _{x \rightarrow-\infty} b^{x}=0$ for any $b>0$
(g) $\lim _{x \rightarrow \infty} \log _{b}(x)=+\infty$ for any $b>0$
(h) $\lim _{x \rightarrow 0^{+}} \log _{b}(x)=-\infty$ for any $b>0$
(i) $\lim _{x \rightarrow \infty} \sin (x)=$ DOES NOT EXIST
(j) $\lim _{x \rightarrow-\infty} \sin (x)=$ DOES NOT EXIST

GROUPWORK
Draw a picture representing each one of the basic limits given above, in the space below.

Infinite Limits Of Polynomials

Again, polynomials reveal their tractable nature:
$\lim _{x \rightarrow \infty} p(x)=\lim _{x \rightarrow \infty} c_{n} x^{n}=+\infty$ or $\lim _{x \rightarrow-\infty} p(x)=\lim _{x \rightarrow-\infty} c_{n} x^{n}$
where $p(x)=c+0+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{n} x^{n}$. In other words to evaluate an infinite limit with a polynomial function, all one has to do is look at the term of the polynomial with the

Exercise

Evaluate $\lim _{x \rightarrow \infty} x^{3}+3 x-4$ and $\lim _{x \rightarrow-\infty} x^{2}-x-1$

Infinite Limits of Rational Functions

As usual, Rational Functions require some careful attention to deal with. However, we use our intuition that rational functions generally behave as a ratio of two polynomials. In that case, in order to evaluate the end behavior of a rational function depends on the highest degree term in the numerator divided by the highest degree term in the denominator.
In other words,

$$
\lim _{x \rightarrow \infty} \frac{p(x)}{q(x)}=\lim _{x \rightarrow \infty} \frac{c_{0}+c_{1} x+c_{2} x^{2}+\ldots c_{n} x^{n}}{d_{0}+d_{1} x+d_{2} x^{2}+\ldots d_{n} x^{n}}=\lim _{x \rightarrow \infty} \frac{c_{n} x^{n}}{d_{n} x^{n}}
$$

EXAMPLES
Anton, Bivens \mathfrak{G} Davis, page 131, \#12, 15, 17
Evaluate the following limits

$$
\lim _{x \rightarrow \infty} \frac{5 x^{2}-4 x}{2 x^{2}+3}
$$

$$
\lim _{x \rightarrow-\infty} \frac{x-2}{x^{2}+2 x+1}
$$

$$
\lim _{x \rightarrow \infty} \sqrt[3]{\frac{2+3 x-5 x^{2}}{1+8 x^{2}}}
$$

CLICKER QUESTION

If $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$ then $\lim _{x \rightarrow a}[f(x)-g(x)]=$
(a) 0
(b) ∞
(c) Does Not Exist
(d) Not enough information given to evaluate the limit

CLICKER QUESTION

TRUE or FALSE: At some point in time, you were once exactly 3 feet tall.
(a) TRUE
(b) FALSE

