Introduction to Limits

Successive Approximations to Find Square Roots: The Babylonian Algorithm.

The concept of successive approximation is key to fully understanding the notion of limit intuitively. One fun application of successive approximations is provided here. Its called The Babylonian Algorithm since it was known by the people of Mesopotamia thousands of years before Calculus was invented!
Pretend you don't have a square root key on your calculator. How would you approximate $\sqrt{2}$? Suppose

$$
\begin{aligned}
a & =\sqrt{2} . \text { Square both sides. } \\
a^{2} & =2 \text { Divide both sides by } x . \\
a & =\frac{2}{a}
\end{aligned}
$$

Only the actual square root of 2 satisfies $\sqrt{2}=2 / \sqrt{2}$. (Of course this is true for any other number, there's nothing special about the number 2 here).

EXAMPLE

If x is an estimate which is less than (the true value of) $\sqrt{2}$ then $\frac{2}{x}$ is an estimate which is \qquad (the true value of) $\sqrt{2}$.
If x is an estimate which is greater than (the true value of) $\sqrt{2}$ then $\frac{2}{x}$ is an estimate which is \qquad (the true value of) $\sqrt{2}$.
Hence an estimate for the actual value of $\sqrt{2}$ which is better than either x or $\frac{2}{x}$ would be \qquad .

GroupWork

Each team will estimate the square root of one of the first 8 prime numbers $(2,3,5,7,11,13$, etc). Begin with $x=1$ as an estimate for \sqrt{r}. Use successive approximations to find the value of \sqrt{r} to 6 decimal places. How many steps did it take?
\# steps Approximation \#steps Approximation

General Babylonian Algorithm.

STEP 1: Let a_{0} be your initial estimate for \sqrt{r}.
STEP 2: Then the next estimate is the average of your most recent estimate and r divided by your most recent estimate.

$$
a_{\text {new }}=\frac{a_{\text {old }}+\frac{r}{a_{\text {old }}}}{2}
$$

STEP 3: Continue calculating terms in the sequence until you reach the level of accuracy desired.

Consider the sequence of numbers you get when using the Babylonian algorithm to approximate $\sqrt{17}$.

Step	Approximation
1	1.00000000000000
2	9.00000000000000
3	5.44444444444444
4	4.28344671201814
5	4.12610662758133
6	4.12310562561781
7	4.12310562561766

The Babylonian Algorithm produces a sequence of numbers x_{n} such that

$$
\lim _{n \rightarrow \infty} x_{n}=\sqrt{r}
$$

We say that "the sequence x_{n} converges to its limit \sqrt{r}."

DEFINITION

An informal definition of the limit of a function $f(x)$ at a point a is if by taking (input) values of x "sufficiently close" to a (but NEVER ACTUALLY EQUAL TO IT) the (output) values of $f(x)$ can be made as close to the number L as desired. Symbolically, this is denoted

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { or } \quad f(x) \rightarrow L \text { as } x \rightarrow a
$$

Exercise Conjecture the value of $\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1}$ considering the following data

x	$f(x)=\frac{x-1}{\sqrt{x}-1}$
0.9	1.9486832981
0.99	1.9949874371
0.999	1.9994998749
0.9999	1.9999499988
0.99999	1.9999950000
1	$? ? ?$
1.0001	2.0000499988
1.001	2.0004998751
1.01	2.0049875621
1.1	2.0488088482

DEFINITION

An informal definition of the limit of a function $f(x)$ as x approaches a from the right is if by taking (input) values of x "sufficiently close" to a (but ALWAYS GREATER THAN IT) the (output) values of $f(x)$ can be made as close to the number L as desired. Symbolically, this is denoted

$$
\lim _{x \rightarrow a^{+}} f(x)=L \quad \text { or } \quad f(x) \rightarrow L \text { as } x \rightarrow a^{+}
$$

An informal definition of the limit of a function $f(x)$ as x approaches a from the left is if by taking (input) values of x "sufficiently close" to a (but ALWAYS LESS THAN IT) the (output) values of $f(x)$ can be made as close to the number L as desired. Symbolically, this is denoted

$$
\lim _{x \rightarrow a^{-}} f(x)=L \quad \text { or } \quad f(x) \rightarrow L \text { as } x \rightarrow a^{-}
$$

THEOREM

The (two-sided) limit of a function $f(x)$ at $x=a$ equals L IF AND ONLY IF both one-sided limits exist and equal the same number L. Symbolically,

$$
\lim _{x \rightarrow a} f(x)=L \Longleftrightarrow \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

CLICKER QUESTION

TRUE or FALSE. $\lim _{x \rightarrow a} f(x)=L$ means that if x_{1} is closer to a than x_{2} is, then $f\left(x_{1}\right)$ will be closer to L than $f\left(x_{2}\right)$ is. You receive one point for your answer TRUE or FALSE and four points for your reasoning. Note: To prove a statement to be TRUE you must show it is always true (in every case), To prove statement to be false you have to provide a single "counter-example" where the statement fails to be true.

CLICKER QUESTION

Suppose you're trying to evaluate $\lim _{x \rightarrow 0} f(x)$. You plug in values of $x=0.1,0.01,0.001,0.0001,0.0001, \ldots$ and get $f(x)=0$ for all of these values. In fact, you are told that $f\left(\frac{1}{10^{n}}\right)=0$ for every $\mathrm{n}=1$, $2,3, \ldots$ TRUE or FALSE: Given the above information, we know that $\lim _{x \rightarrow 0} f(x)=0$

CLICKER QUESTION

The statement "Whether or not $\lim _{x \rightarrow a} f(x)$ exists depends on how $f(a)$ is defined" is TRUE
(a) Sometimes
(b) Always
(c) Never
(d) Can Not Be Determined From The Information Given

CLICKER QUESTION

If a function $f(x)$ is not defined at $x=a$,
(a) $\lim _{x \rightarrow a} f(x)$ can not exist
(b) $\lim _{x \rightarrow a} f(x)$ could be zero
(c) $\lim _{x \rightarrow a} f(x)$ must approach ∞
(d) None of the above

