Wednesday September 12
Exponentials and Logarithms

Another Family of Functions

Let's consider the family of functions described by $y=b^{x}$ where $b>0$

b^{x} for $b=2, e, 3,4$, and 10

b^{x} for $b=\frac{1}{2}, \frac{1}{e}, \frac{1}{3}, \frac{1}{4}$, and $\frac{1}{10}$

The number e is approximately 2.718282 . The exponential curve e^{x} is the unique member of the family of curves whose tangent to the curve at the common point $(0,1)$ has slope exactly equal to 1 .
What's so special about e ? It is the base of the natural logarithmic function, $\ln (x)$. The function e^{x} is known as the natural exponential function. The graphs of $y=e^{x}$ and $y=\ln (x)$ are given below on the same axes.

GROUPWORK

Observe the graphs carefully and write down as many relationships between these functions as you can deduce.

Algebraic Properties of Logarithms

If $b>0, b \neq 1, a>0, c>0$ and r is any real number, then
(a) $\log _{b}(a c)=\log _{b}(a)+\log _{b}(c)$
(b) $\log _{b}(a / c)=\log _{b}(a)-\log _{b}(c)$
(c) $\log _{b}\left(a^{r}\right)=r \log _{b}(a)$
(d) $\log _{b}(1 / c)=-\log _{b}(c)$

Cancellation Equations

Since $\log _{b}(x)$ and b^{x} are inverses of each other (for $b>0$ and $b \neq 1$) it follows that

$$
\begin{aligned}
\log _{b}\left(b^{x}\right) & =x \text { for all } x \in \mathbb{R} \\
b^{\log _{b}(x)} & =x \text { for all } x>0
\end{aligned}
$$

Formula for Change of Logarithmic Base

$$
\log _{b}(x)=\frac{\ln (x)}{\ln (b)}
$$

Logarithmic Family of Curves

Exercise

Anton, Bivens \& David, p. 75, Question 1.5.45. Find the error.

$$
\begin{aligned}
3 & >2 \\
3 \log \left(\frac{1}{2}\right)^{3} & >2 \log \left(\frac{1}{2}\right) \\
\log \left(\frac{1}{2}\right)^{3} & >\log \left(\frac{1}{2}\right)^{2} \\
\log \left(\frac{1}{8}\right) & >\log \left(\frac{1}{4}\right) \\
\frac{1}{8} & >\frac{1}{4}
\end{aligned}
$$

