Inverse Functions

We shall examine more closely the relationship between two variables through a functional relationship, i.e. \(y = f(x) \) from both directions, i.e. \(x = g(y) \) and classify the functions \(f \) and \(g \) as inverses of each other. Of particular interest will be the relationship between the domain and range of a function and its inverse function. We will also be interested in tests and techniques for determining when an inverse function exists and how to compute it explicitly when it does.

Homework 4: *Anton, Bivens & Davis* §1.5: 1, 5, 7, 8, 10, 10, 11, 18, 21, 24, 25

Class 6: *Wednesday, September 12*
Reading: *Anton, Bivens & Davis* Section 1.6

Exponentials and Logarithms

A particular important example of a function-inverse pair is the natural exponential function \(e^x \) and the natural logarithm function \(\ln(x) \). We will also review the rules of exponents and logarithms.

Homework 5: *Anton, Bivens & Davis* §1.6: 1, 2, 5, 6, 13, 16, 25, 29, 43, 49

Lab 2: *Thursday, September 13*

Homework 3, 4 & 5 Due in the Math 110 Course Box by 5:00 pm Thursday September 13

Class 6: *Friday, September 14*
Reading: *Anton, Bivens & Davis* Section 1.7

Mathematical Models

We will begin our discussion of the application of mathematics to describe all sorts of natural and scientific phenomena, known as mathematical modelling.

Homework 6: *Anton, Bivens & Davis* Chapter 1 Review: 1, 6, 11, 15, 27, 33, 40

Quiz 2 *Take Home Quiz Due Monday September 17*