$Math\ 110\ Fall\ 2007$

Quiz $\mathbf{4}$

BASIC CALCULUS I

Name:	_
Date:	
Time Begun:	
Time Ended:	

Math 110 Friday, October 5, 2007 Prof. Ron Buckmire

Topic covered: Derivatives, Tangents, Rates of Change

The idea behind this quiz is to assess your understanding of derivatives, computationally, analytically and graphically.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 1. Once you open the quiz, you have 30 minutes to complete it.
- 2. You may not use the book, any of your class notes. You may use a graphing calculator. You must work alone and not communicate with any student any information about your answers or the quiz itself.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. This quiz is due on Monday, October 8, at the beginning of class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, _____, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

SHOW ALL YOUR WORK AND EXPLAIN ALL YOUR ANSWERS

We want to use the information about the function $g(t) = t^3$ to find the equation of the tangent line to g(t) at the point (2, g(2)).

t	1.900	1.990	1.999	2.000	2.001	2.010	2.100
g(t)	6.859	7.881	7.988	8.000	8.012	8.121	9.261

a. (4 points.) Use the following table to produce a sequence of successive approximations in order to find the **exact value** of the slope of the curve $g(t) = t^3$ at the point (2, g(2)).

b. (2 points.) Use your answer from (a.) about the exact value of the slope of the curve at t = 2 to find the equation of the tangent line to the curve at the point t = 2.

c. (2 points.) Sketch the tangent line to the curve at t = 2 on the graph below. (Make sure your sketch touches the t-axis and the line t = 3.)

d. (2 points.) Which is greater, the average rate of change of the function $g(t) = t^3$ on the interval [1,3] or the instantaneous rate of change of g(t) at the point t = 2? EXPLAIN YOUR ANSWER.