SHOW ALL YOUR WORK AND EXPLAIN ALL YOUR ANSWERS

Consider the two functions \(f(x) = \sqrt{x}, x \geq 0 \) and \(g(x) = x^4, -\infty < x < \infty \).

(a) (3 points) Is \(f(x) \) invertible? If not, why not? If it is invertible, say why. Is \(f(x) \) even, odd or neither? EXPLAIN YOUR ANSWERS.

\[
\begin{align*}
\text{Yes, } f(x) &= \sqrt{x}, x \geq 0 \text{ is invertible since it passes the horizontal line test.} \\
\text{No, } f(-x) &= \text{ undefined when } x \leq 0
\end{align*}
\]

(b) (3 points) Is \(g(x) \) invertible? If not, why not? If it is invertible, say why. Is \(g(x) \) even, odd or neither? EXPLAIN YOUR ANSWERS.

\[
\begin{align*}
\text{No, } g(\pm x) &= (-x)^4 = x^4 = g(x) \text{ it does not pass the horizontal line test!} \\
\text{Yes, } g(x) \text{ is even. } g(-x) &= (-x)^4 = x^4 = g(x).
\end{align*}
\]

(c) (2 points) Compute \((g \circ f)(x)\) and \((f \circ g)(x)\) and give their domains. Are these functions different?

\[
\begin{align*}
(g \circ f)(x) &= g(f(x)) = g(\sqrt{x}) = (\sqrt{x})^4 = x^2, \quad x \geq 0 \\
(f \circ g)(x) &= f(g(x)) = f(x^4) = \sqrt{x^4} = x^2, \quad -\infty < x \leq 0
\end{align*}
\]

(d) (2 points) Sketch the graphs of \((g \circ f)(x)\) and \((f \circ g)(x)\) on the axes below.

- Graph of \(g \circ f \): **INVERTIBLE**
- Graph of \(f \circ g \): **NOT INVERTIBLE**