BONUS Quiz **4**

Basic Calculus I

Name:	Math 110		
Date: Time Begun: Time Ended:			
Topic: Euler's Method and Differential	Equations		
The idea behind this quiz is to assess your unde	rstanding of Euler's Method and Differential Equations.		
Reality Check:			
EXPECTED SCORE :/10	ACTUAL SCORE :/10		
Instructions:			
0. Before you open the quiz, look at the his	nt at http://faculty.oxy.edu/ron/math/110/07		
1. Once you open the quiz, you have 60 r	ninutes to complete it.		
2. You may not use your text or any other s You must work alone. Do not discuss th	ource, including course materials. You may use a calculator. e contents of this quiz with anyone.		
3. If you use your own paper, please staple stapler, buy or borrow one. UNSTAPLE	e it to the quiz before coming to class. If you don't have a CD PAPERS WILL NOT BE GRADED.		
4. After completing the quiz, sign the pleathese rules.	dge below stating on your honor that you have adhered to		
5. Your solutions must have enough detail determine HOW you came up with your	s such that an impartial observer can read your work and solution.		
6. This bonus quiz is due on Monda QUIZZES WILL BE ACCEPTED.	ay, December 3, at the beginning of class. NO LATE		
Pledge: I,	edge my honor as a human being and Occidental student, letter and in spirit.		

SHOW ALL YOUR WORK AND EXPLAIN EVERY ANSWER

Consider the initial value problem (IVP) below

$$C'(t) = 2t \cdot (C(t))^2$$

$$C(1) = -1.$$

(a) (6 points) Use Euler's method with a time step of $\Delta t = 1/2$ to fill in the table below.

t	C(t)	Δt	C'(t)	ΔC
			XXXXXXXX XXXXXXXX XXXXXXXX	XXXXXXXX XXXXXXXX XXXXXXXX

(b) (2 points) Consider the function $C(t) = -t^{-2}$. Is this the solution to the given initial value problem?

(c) (2 points) Determine whether the approximation computed in part (a) for C(2) is an over-estimate or under-estimate.