EXERCISE SET 2.5

1. (a) no, $x = 2$
 (e) yes
 (b) no, $x = 2$
 (f) yes
 (c) no, $x = 2$
 (d) yes
2. (a) no, $x = 2$
 (e) no, $x = 2$
 (b) no, $x = 2$
 (f) yes
 (c) no, $x = 2$
 (d) yes
3. (a) no, $x = 1, 3$
 (e) no, $x = 3$
 (b) yes
 (f) yes
 (c) no, $x = 1$
 (d) yes
8. \(f(x) = \frac{1}{x}, \quad g(x) = \begin{cases}
0 & \text{if } x = 0 \\
\sin \frac{1}{x} & \text{if } x \neq 0
\end{cases} \)

9. (a) \[
\begin{array}{c}
y = \text{?} \\
1 \\
3 \\
\infty \\
\text{x}
\end{array}
\]
(b) One second could cost you one dollar.

10. (a) no; disasters (war, flood, famine, pestilence, for example) can cause discontinuities
(b) continuous
(c) not usually continuous; see Exercise 9
(d) continuous

11. none
12. none
13. none
14. \(x = -2, 2 \)
15. \(x = 0, -1/2 \)
16. none
17. \(x = -1, 0, 1 \)
18. \(x = -4, 0 \)
19. none
20. \(x = -1, 0 \)

21. none; \(f(x) = 2x + 3 \) is continuous on \(x < 4 \) and \(f(x) = 7 + \frac{16}{x} \) is continuous on \(4 < x \);
\[
\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4) = 11 \text{ so } f \text{ is continuous at } x = 4
\]

22. \(\lim_{x \to 1} f(x) \) does not exist so \(f \) is discontinuous at \(x = 1 \)

23. (a) \(f \) is continuous for \(x < 1 \), and for \(x > 1 \); \(\lim_{x \to 1^-} f(x) = 5 \), \(\lim_{x \to 1^+} f(x) = k \), so if \(k = 5 \) then \(f \) is continuous for all \(x \)
(b) \(f \) is continuous for \(x < 2 \), and for \(x > 2 \); \(\lim_{x \to 2^-} f(x) = 4k \), \(\lim_{x \to 2^+} f(x) = 4 + k \), so if \(4k = 4 + k \), \(k = 4/3 \) then \(f \) is continuous for all \(x \)
24. (a) \(f \) is continuous for \(x < -3 \), and for \(x > -3 \); \(\lim_{x \to (-3)^-} f(x) = k/9 \), \(\lim_{x \to (-3)^+} f(x) = 0 \), so if \(k = 0 \) then \(f \) is continuous for all \(x \).

(b) \(f \) is continuous for \(x < 0 \), and for \(x > 0 \); \(\lim_{x \to 0^-} f(x) \) doesn’t exist unless \(k = 0 \), and if so then \(\lim_{x \to 0^-} f(x) = +\infty \); \(\lim_{x \to 0^+} f(x) = 9 \), so no value of \(k \).

25. \(f \) is continuous for \(x < -1 \), \(-1 < x < 2 \) and \(x > 2 \); \(\lim_{x \to -1^-} f(x) = 4 \), \(\lim_{x \to -1^+} f(x) = k \), so \(k = 4 \) is required. Next, \(\lim_{x \to 2^-} f(x) = 3m + k = 3m + 4 \), \(\lim_{x \to 2^+} f(x) = 9 \), so \(3m + 4 = 9 \), \(m = 5/3 \) and \(f \) is continuous everywhere if \(k = 4 \), \(m = 5/3 \).

26. (a) no, \(f \) is not defined at \(x = 2 \)

(c) yes

(b) no, \(f \) is not defined for \(x \leq 2 \)

(d) no, \(f \) is not defined for \(x \leq 2 \)

27. (a) \[y \]

(b) \[y \]

28. (a) \(f(c) = \lim_{x \to c} f(x) \)

(b) \(\lim_{x \to 1^-} f(x) = 2 \), \(\lim_{x \to 1^+} g(x) = 1 \)

(c) Define \(f(1) = 2 \) and redefine \(g(1) = 1 \).

29. (a) \(x = 0 \), \(\lim_{x \to 0^-} f(x) = -1 \neq +1 = \lim_{x \to 0^+} f(x) \) so the discontinuity is not removable.

(b) \(x = -3 \); define \(f(-3) = -3 = \lim_{x \to -3} f(x) \), then the discontinuity is removable.

(c) \(f \) is undefined at \(x = \pm 2 \); at \(x = 2 \), \(\lim_{x \to 2^-} f(x) = 1 \), so define \(f(2) = 1 \) and \(f \) becomes continuous there; at \(x = -2 \), \(\lim \) does not exist, so the discontinuity is not removable.

30. (a) \(f \) is not defined at \(x = 2 \); \(\lim_{x \to 2^-} f(x) = \lim_{x \to 2} \frac{x + 2}{x^2 + 2x + 4} = \frac{1}{3} \), so define \(f(2) = \frac{1}{3} \) and \(f \) becomes continuous there.

(b) \(\lim_{x \to 2^-} f(x) = 1 \neq 4 = \lim_{x \to 2^+} f(x) \), so \(f \) has a nonremovable discontinuity at \(x = 2 \).

(c) \(\lim_{x \to 1^-} f(x) = 8 \neq f(1) \), so \(f \) has a removable discontinuity at \(x = 1 \).