Math 110 Fan 2007 Basic CALcULUS 1
Report on Test 3 Prof. Ron Buckmire

Grade Distribution (N=60)

Range 100+ | 93+ | 89+ | 84+ | 80+ | 75+ | 71+ | 65+ | 60+ | 554 | 484 | 41+ | 40-
Grade A+ A A- |B+ | B B- |C+ | C C- |D+ | D D- |F
Frequency | 8 7 8 7 4 6 4 5 2 2 1 2 4

Summary Overall class performance was the best of all the in-class exams to date. Exactly half of the class scored a
B+ or higher. The mean score was 79, the median score was 84 and the mode was 87 and 91. The high score was
103. The low score was 25.

#1 L’Hopital’s Rule, The Hardest Derivative. This question was about functions of the form f (x)g(m) and the
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#2 Euler’s Method, Local Linear Approximation, Concavity.
1 1
(a) Given M’ = .04M + 1000 and M (3) = 8000, M (3 + E) ~ M(3)+ M’(3)E using Euler’s Method. From the

1 1
differential equation, M’(3) = .04+ M (3)+1000 = .04x8000+1000 = 1320. So, M(3+E) ~ 8000+1320*ﬁ = 8000+

110 = 8110. (b) M"" = .04M’40 = .04%(.04M+1000) = .0016 M +40. To determine whether our approximation in
(a) is an over-estimate or under-estimate we need to know M"(3) = .0016 M (3) +40 = .0016+8000+40 = 52.8 > 0
which means that M is concave up so Euler’s estimate of M (3 + ) starting with M (3) is an under-estimate.

#3 Curve Sketching, Critical Points, Inflection Points, Extrema. You can use all the given information about
I'(z) to deduce that it has a local and global max at x = —1 and a local and global min at = 1. It also has only
one root at (0,0) and horizontal asymptotes as x — oo at y = 0.

#4 Single Variable Optimization. Let the dimensions of the box be z, nz and y. We know V = na?y and we are
trying to find  and y so that the surface area A of the box is minimized. However, since a box has 6 sides, 3 pairs
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of which are identical, A = 2zy + 2na? + 2nxy. However, y = — so that A =2x— + 2nz? 4 2nr—;.
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\ V(2 —Z n) = x (Take cube root of both sides)
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You need to check that this value of x = z* produces the minimum by using the Second Derivative Test. A" =
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=4n 4+ 8n = 12n > 0 since n > 0.
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minimum value of z = z*, A”(z*) =4n +4




The dimensions of the box with fixed volume V where one side of the base is n times the other has dimensions
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