Grade Distribution ($\mathrm{N}=60$)

Range	$100+$	$93+$	$89+$	$84+$	$80+$	$75+$	$71+$	$65+$	$60+$	$55+$	$48+$	$41+$	$40-$
Grade	$\mathrm{A}+$	A	$\mathrm{A}-$	$\mathrm{B}+$	B	$\mathrm{B}-$	$\mathrm{C}+$	C	$\mathrm{C}-$	$\mathrm{D}+$	D	$\mathrm{D}-$	F
Frequency	8	7	8	7	4	6	4	5	2	2	1	2	4

Summary Overall class performance was the best of all the in-class exams to date. Exactly half of the class scored a B+ or higher. The mean score was 79 , the median score was 84 and the mode was 87 and 91 . The high score was 103. The low score was 25 .
\#1 L'Hôpital's Rule, The Hardest Derivative. This question was about functions of the form $f(x)^{g(x)}$ and the fact they must be re-written as $e^{g(x) \ln (f(x))}$. (a) $\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}\right)^{\frac{1}{x}}=\lim _{x \rightarrow \infty} e^{\frac{1}{x} \ln \left(\frac{1}{x^{2}}\right)}=e^{\lim _{x \rightarrow \infty} \frac{1}{x} \ln \left(\frac{1}{x^{2}}\right)}=e^{p}=L$ where $p=\lim _{x \rightarrow \infty} \frac{1}{x} \ln \left(\frac{1}{x^{2}}\right)=\lim _{x \rightarrow \infty} \frac{-2 \ln (x)}{x}=\lim _{x \rightarrow \infty} \frac{\frac{-2}{x}}{1}=0=p$ so $L=e^{0}=1=\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}\right)^{\frac{1}{x}}$.
(b) $\frac{d}{d x}\left[\left(\frac{1}{x^{2}}\right)^{\frac{1}{x}}\right]=\frac{d}{d x}\left[e^{\frac{1}{x} \ln \left(\frac{1}{x^{2}}\right)}\right]=e^{\frac{1}{x} \ln \left(\frac{1}{x^{2}}\right)} \frac{d}{d x}\left[\frac{1}{x} \ln \left(\frac{1}{x^{2}}\right)\right]=e^{\frac{1}{x} \ln \left(\frac{1}{x^{2}}\right)}\left[-\frac{1}{x^{2}} \ln \left(\frac{1}{x^{2}}\right)+\frac{1}{x} \frac{1}{\frac{1}{x^{2}}} \frac{-2}{x^{3}}\right]$

\#2 Euler's Method, Local Linear Approximation, Concavity.

(a) Given $M^{\prime}=.04 M+1000$ and $M(3)=8000, M\left(3+\frac{1}{12}\right) \approx M(3)+M^{\prime}(3) \frac{1}{12}$ using Euler's Method. From the differential equation, $M^{\prime}(3)=.04 * M(3)+1000=.04 * 8000+1000=1320$. So, $M\left(3+\frac{1}{12}\right) \approx 8000+1320 * \frac{1}{12}=8000+$ $110=8110$. (b) $M^{\prime \prime}=.04 M^{\prime}+0=.04 *(.04 M+1000)=.0016 M+40$. To determine whether our approximation in (a) is an over-estimate or under-estimate we need to know $M^{\prime \prime}(3)=.0016 * M(3)+40=.0016 * 8000+40=52.8>0$ which means that M is concave up so Euler's estimate of $M\left(3+\frac{1}{12}\right)$ starting with $M(3)$ is an under-estimate.
\#3 Curve Sketching, Critical Points, Inflection Points, Extrema. You can use all the given information about $\Gamma(x)$ to deduce that it has a local and global max at $x=-1$ and a local and global min at $x=1$. It also has only one root at $(0,0)$ and horizontal asymptotes as $x \rightarrow \pm \infty$ at $y=0$.
\#4 Single Variable Optimization. Let the dimensions of the box be $x, n x$ and y. We know $V=n x^{2} y$ and we are trying to find x and y so that the surface area A of the box is minimized. However, since a box has 6 sides, 3 pairs of which are identical, $A=2 x y+2 n x^{2}+2 n x y$. However, $y=\frac{V}{n x^{2}}$ so that $A=2 x \frac{V}{n x^{2}}+2 n x^{2}+2 n x \frac{V}{n x^{2}}$.

$$
\begin{aligned}
A & =2 \frac{2 V}{n x}+2 n x^{2}+\frac{2 V}{x} \\
\frac{d}{d x}[A] & =-\frac{2 V}{n x^{2}}+4 n x-\frac{2 V}{x^{2}} \quad \text { (Differentiate both sides with respect to } x \text {) } \\
0 & =-\frac{2 V}{n x^{2}}+4 n x-\frac{2 V}{x^{2}} \quad \text { (Set equal to zero to find critical points of } \text {) } \\
\frac{2 V}{n x^{2}}+\frac{2 V}{x^{2}} & =4 n x \quad \text { (Get all } V \text { on one side) } \\
\frac{2 V}{x^{2}}\left(\frac{1}{n}+1\right) & =4 n x \quad \text { (Factor left hand side) } \\
2 V\left(\frac{1+n}{n}\right) \frac{1}{4 n} & =x^{3} \quad \text { (Get all } x \text { on one side) } \\
\left(\frac{1+n}{n}\right) \frac{V}{2 n} & =x^{3} \quad \text { (Simplify left hand side) } \\
\sqrt[3]{\frac{V(1+n)}{2 n^{2}}} & =x \quad \text { (Take cube root of both sides) }
\end{aligned}
$$

You need to check that this value of $x=x^{*}$ produces the minimum by using the Second Derivative Test. $A^{\prime \prime}=$ $\frac{4 V}{n x^{3}}+4 n+\frac{4 V}{x^{3}}$. We need to know the sign of $A^{\prime \prime}\left(x^{*}\right) . A^{\prime \prime}(x)=4 n+\frac{4 V}{x^{3}}\left(\frac{1+n}{n}\right)$ and since $\frac{V}{x^{3}}=\frac{2 n^{2}}{n+1}$ at the minimum value of $x=x^{*}, A^{\prime \prime}\left(x^{*}\right)=4 n+4 \frac{2 n^{2}}{n+1} \frac{1+n}{n}=4 n+8 n=12 n>0$ since $n>0$.

The dimensions of the box with fixed volume V where one side of the base is n times the other has dimensions $\sqrt[3]{\frac{V(1+n)}{2 n^{2}}} \times n \sqrt[3]{\frac{V(1+n)}{2 n^{2}}} \times \frac{V}{n}\left(\frac{2 n^{2}}{V(1+n)}\right)^{2 / 3}$

