MATH 110

Ron Buckmire
Fall 2007
Study Guide for Exam II

The exam will cover material that appears on homeworks 13 through 24, Classes 13 through 24 and Quiz 4 through 7. Sections of the textbook included are all of Chapter 3 and Chapter 4 except for Section 4.4. I try to make the study guides complete, but there is no guarantee.  You should review homeworks, homework solutions, quizzes, handouts, labs, and class notes.


This might change, but my current plan is not to allow calculators.  

Topics

· Derivatives

· know all the different notations for derivative covered on the homework assignments

· compute a derivative using the limit definition(s)
· Evaluate a limit by interpreting it as a particular derivative, i.e. 
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(a) as a limit of a difference quotient

· use the limit definition of derivative to prove differentiation formulas (e.g.,
[image: image2.wmf])
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).  I will assume that you know the values of the limits 
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.  In fact I might give you information about certain limits like 
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, and have you use these to prove the derivative of an elementary function
· Know the derivatives of elementary functions on Derivatives To Remember  

· compute using all the derivative formulas on the Rules of Differentiation handout

· Ability to evaluate or estimate numbers such as 
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· Give graph of 
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, sketch the graph of 
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; given a graph of 
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· estimate derivatives with left estimates, right estimates, symmetric difference quotients, and tables of values (i.e., successive approximations).  
· Equation of the line tangent to a function at  (a,f(a)) is y=
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(a)(x-a)
· Local linear approximation  to estimate the value of a function near a value you already know such as sin(3) (i.e. near π) or 
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[image: image14.wmf]3

8

=2).
· compute higher-order derivatives such as 
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 EMBED Equation.3  [image: image16.wmf]
· the units on a derivative are always 
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· Physical interpretation of derivative as the rate of change of the output variable relative to the input

· When the function is increasing(decreasing), the derivative is positive(negative)
· Differentiability implies continuity, a function not continuous at a point implies  the derivative does not exist at that point

· Difference between average rate of change and instantaneous rate of change and their graphical interpretation (secant line versus tangent line)

Review Exercises
(1)  Let 
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.  Use the definition of derivative to compute 
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(2)  Use the definition of derivative to prove that 
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(3)  If 
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(4)  Determine whether 
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 is the solution to the differential equation 
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 (5)  Find 
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.  [Hint:  recognize the limit as a derivative, and use differentiation rules.]

(6)  In this problem, you will prove the quotient rule in two different ways.  [The two purposes of this problem are (1) to see that the quotient rule is true, and (2) to get differentiation practice.]


(a)  Use the product and chain rules to continue the computation 
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.  After computing the derivative, use algebra to make your answer look like the quotient rule.


(b)  Let 
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.  Take derivatives of both sides and solve for 
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(7)  Several times, we’ve used the fact that differentiable implies continuous.  (For example, when sketching 
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, you draw open circles in the graph of 
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 is discontinuous.)  Your task in this problem is to prove this fact.  You’ll need the “limits are nice” theorem, the definition of continuous, the version of the definition of derivative that you developed in problem (13) on homework 6, and two applications of the “introduce a canceling pair” algebra trick!  Assume that 
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 is differentiable at 
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(8)  Fill in the blanks, then find the value of 
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 that makes 
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 continuous.
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 (9)  Suppose 
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 is the number of snarfs living in Snarfville, 
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 years from now.  What are the units on 
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 (10)  Let 
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(11) Suppose at a price $p, a quantity q of a commodity (IPods!) is sold, and q=f(p). Explain in economic terms the meaning of the statements f(100)=240,000 and 
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(100)=-29,000?
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