Definition: The derivative of a function $f(x)$ at a point $x=a$ is denoted by the symbol $f^{\prime}(a)$.

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If the above limit(s) exist then the function $f(x)$ is differentiable at $x=a$.

Addition and Subtraction Rule

$$
\begin{aligned}
{[f(x)+g(x)]^{\prime} } & =f^{\prime}(x)+g^{\prime}(x) \\
{[f(x)-g(x)]^{\prime} } & =f^{\prime}(x)-g^{\prime}(x)
\end{aligned}
$$

Constant Multiple Rule

$$
[c f(x)]^{\prime}=c f^{\prime}(x)
$$

Product Rule

$$
[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Quotient Rule

$$
\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}
$$

Reciprocal Rule

$$
\left[\frac{1}{g(x)}\right]^{\prime}=-\frac{g^{\prime}(x)}{(g(x))^{2}}
$$

Chain Rule

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

$f(x)$	$f^{\prime}(x)$
C c is a constant	0
$m x+b$ m is slope, b is intercept	m
x^{p}	$p x^{p-1}$
$\sin (x)$	$\cos (x)$
$\cos (x)$	$-\sin (x)$
$\tan (x)$	$\sec ^{2}(x)$
$\frac{1}{x}$	$\frac{-1}{x^{2}}$
a^{x} a is a positive constant	$a^{x} \cdot \ln (a)$
e^{x}	e^{x}
$\ln (x)$	$\frac{1}{x}$

