Definition: The derivative of a function f(x) at a point x = a is denoted by the symbol f'(a).

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

If the above limit(s) exist then the function f(x) is differentiable at x = a.

Addition and Subtraction Rule

$$[f(x) + g(x)]' = f'(x) + g'(x)$$
$$[f(x) - g(x)]' = f'(x) - g'(x)$$

Constant Multiple Rule

$$[cf(x)]' = cf'(x)$$

Product Rule

$$[f(x) \cdot g(x)]' = f'(x)g(x) + f(x)g'(x)$$

Quotient Rule

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Reciprocal Rule

$$\left[\frac{1}{g(x)}\right]' = -\frac{g'(x)}{(g(x))^2}$$

Chain Rule

$$[f(g(x))]' = f'(g(x))g'(x)$$

f(x)	f'(x)
\mathbf{C} c is a constant	0
mx + b <i>m</i> is slope, <i>b</i> is intercept	m
x^p	px^{p-1}
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\tan(x)$	$\sec^2(x)$
$\frac{1}{x}$	$\frac{-1}{x^2}$
a^x a is a positive constant	$a^x \cdot \ln(a)$
e^x	e^x
$\ln(x)$	$\frac{1}{x}$