Occidental College Department of Mathematics
Gateway - Exponents
Help Sheet

The Gateway room, Fowler 301, is staffed Monday through Thursday, 12:30-1:30, for retakes and tutoring. If you can't make it any of those times, contact Professor Lawrence for an appointment (Fowler 324, x2647, DonLoxy.edu).

1. The key rule: $x^{a} x^{b}=x^{a+b}$. This holds for ALL a and b ! Recall $x^{0}=1$. Ex: $x^{2} x^{-5}=$
2. The key rule: $\left(x^{a}\right)^{b}=x^{a b}$. Here you multiply the exponents. Ex: $\left(x^{2}\right)^{-5}=$
3. The problems here are just a combination of 1 and 2 above. As with all other expressions, work from the inside out, simplifying as you go. Ex: $\left(x x^{-5} x^{3}\right)^{-2}=$
4. This is just a combination of 1 and 2 again, except more variables are introduced. Remember that you can combine x 's with other x 's and y 's with other y 's (e.g. $x^{2} y \cdot x^{5} y^{3}=x^{2+5} y^{1+3}=x^{7} y^{4}$). But you wouldn't combine x 's with y 's. Ex: $\left(2 x^{2} y\right)\left(-x y^{2}\right)=$
5. Key rule: $x^{a / b}=\sqrt[b]{x^{a}}=(\sqrt[b]{x})^{a}$. Ex: $(27)^{2 / 3}=$
6. You're going to use the same rule as 5 , just in reverse. So $\sqrt{x^{4}}=x^{4 / 2}=x^{2}$. Ex: Rewrite $\sqrt[3]{x^{6} y^{3} z^{7}}$ without roots (just use exponents).
7. First, to simplify a fractional expression with exponents, you need to remember the rule: $\frac{x^{a}}{x^{b}}=x^{a-b}$. (Note the relationship with the multiplication rule in 1!) Then, to get rid of negative exponents, just remember that $x^{-a}=\frac{1}{x^{a}}$. So if you have a negative exponent in the numerator (top), just take it to the denominator (bottom) with a positive exponent. The reverse works too: If you have a negative exponent in the denominator, just take it to the numerator with a positive exponent. Ex: Leave no negative exponent in $\frac{x y z^{-2}}{x^{-2} y z^{2}}$
8. Here, the whole expression is taken to the negative exponent. But remember that the rules in 1 and 2 hold for negative exponents too! Take the exponent first; then simplify. Ex: Leave no negative exponent in $\left(\frac{x y^{-2}}{x y^{2}}\right)^{-1}$
9. You can solve an equation like $2^{4 x}=8$ using logarithms, but you don't have to use them. You can simply rewrite the right hand side using the same base, 2^{3}. Since you have two quantities with the same base equal to each other, you can set the two exponents equal to each other, $4 x=3$, and solve for x.
10. Your approach to a more complicated equation with exponents is to first simplify it using addition/subtraction and multiplication/division until you get it in the above form. Another helpful hint: $4^{x}=\left(2^{2}\right)^{x}=2^{2 x}$. Ex: Solve $8+4^{x+1}=10$.
