Quiz 9	Basic Calculus I				
Name:	35 (1.416				
	Math 110				
Date:	Wednesday, November 29, 2000				
Time Begun:	Ron Buckmire				
Time Ended:	Alan Knoer				

Topic: Partial Derivatives

This quiz is intended to further your understanding of partial derivatives and their applications.

Instructions:

- 1. Once you open the quiz, you have 30 minutes to complete it.
- 2. You may not use your text or any other source, including course materials. You may use a calculator. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy or borrow one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. **This quiz is due on Friday, December 1**, at the beginning of class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,,	pledge my	honor	as a	human	being	and	Occidental	student
that I have followed all the rules above to t	he letter an	nd in spi	irit.					

SHOW ALL YOUR WORK

1. (4 points). Suppose $f(x,y) = x^2y^3 + y\sin(2x) + 4x + \ln(y)$. Compute $f_x(0,1)$ and $f_y(0,1)$

- **2.** Consider $G(p,q) = p^q, p > 0$. You might want to think of this as $G(p,q) = e^{q \ln(p)}$. NOTE: G is dependent on p and q only, p and q are completely independent.
 - (a) (2 points). Find $\frac{\partial G}{\partial p}$.

(b) (2 points). Find $\frac{\partial G}{\partial q}$.

(c) (2 points). Find $\frac{\partial G}{\partial x}$.