Quiz 7	Basic Calculus I					
Name:						
	Math 110					
Date:	Wednesday, November 1, 2000					
Time Begun:	Ron Buckmire					
Time Ended:	Alan Knoerr					

Topic: Maxima, Minima and Inflection Points

This quiz is intended to assess your understanding of maxima, minima and inflection points, and your ability to find these.

Instructions:

- 1. Once you open the quiz, you have 30 minutes to complete it.
- 2. You may not use your text or any other source, including course materials. You may use a calculator. You must work alone. If you do not know how to use your calculator to graph a function, bring it to lab this week to learn how to do this.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy or borrow one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. **This quiz is due on Friday, November 3**, at the beginning of class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I,,	pledge my	honor	as a	human	being	and	Occidental	student
that I have followed all the rules above to t	he letter an	nd in spi	irit.					

Math 110 Fall 2000 Quiz Seven

SHOW ALL YOUR WORK

Consider the function $f(x) = x^3 + 2x^2 - x + 4$. Identify all values of x in the interval $-2 \le x \le 2$ where f has a local maximum, a local minimum or an inflection point. Give evidence supporting your claims. Evaluate f at each of these points, and identify the global maxima and minima for f on this interval. Finally, use this information to sketch a graph of f on this interval.