Mathematics As A Liberal Art

Class 24: Frieze Patterns

Definition: Frieze Pattern

Each frieze pattern (or strip pattern) is formed by repeating copies of one small bit of a pattern (called the fundamental region or motif) by translation, rotation and/or reflection. Some examples of strip patterns might be: a tire tread mark, a border on a room wall, artistic border on a Grecian urn, or a border around a sheet of paper.

Translations: Every frieze must have translational symmetry. (Why?)

Reflections: Horizontal reflections need to be through the midline of the strip. (Why?)

Vertical reflections must be done through an infinite number of vertical lines of reflection. (Why?)

Glide Reflections reflect the motif along the horizontal midline and combine that with a translation.

Rotations: Rotations around a point on the midline of the strip (although there may be many centers of possible rotation) at an angle of 180°. (Why?)

GroupWork

Let's classify the symmetries of the frieze patterns on the last sheet and put our results in our table below. Put a Y if the given frieze has that symmetry, and an N if not.

	a	b	c	d	e	f	g
Translation							
Horizontal Reflection							
Vertical Reflection							
180° Rotation							
Glide Reflection							

One can do these reflections/rotations/translations on any given motif, but is there any kind of systematic way to classify the patterns that emerge? YES!

There are Only Seven Distinct Frieze Patterns

One can prove (although we won't) that there are, in fact, only 7 distinct patterns for friezes. Each of the friezes above represents one of the 7 distinct patterns. (Obviously we can create an infinite number of different strips even though there are only 7 basic patterns, simply by altering the underlying motif.)

	Translation	Horizontal Reflection	Vertical Reflection	180 Degree Rotation	Glide Reflection
p112					
$p^{p 111}$					
plal					
p1m1 $4 \leq 4<4<4$					
$\begin{gathered} p m 11 \\ \rightarrow\|-\|+\| \end{gathered}$					
pmm2 $\rightarrow\|>\|>\|$					

The flowchart on the next page can also help you systematically figure out what the pattern is. (Note: The notation given at the bottom is crystallographers' notation for the 7 patterns.)

Match the frieze (strip pattern) below with the associated type

-*	-*	\cdots	-*	-*	-*	-*	-0

