Mathematics As A Liberal Art

Class 19: Monday March 25

The Fundamental Theorem of Calculus

DEFINITION: The Fundamental Theorem of Calculus

When $f(x)$ is a function that is "nice" (i.e. continuous) on $[a, b]$ and there exists an antiderivative of $f(x)$ called $F(x)$ so that $F^{\prime}(x)=f(x)$ the Fundamental Theorem of Calculus (FTC) says that

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

But this means that we can replace the $f(x)$ in the integral with $F^{\prime}(x)$, so that

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

In other words the value of the definite integral of $f(x)$ from $x=a$ to $x=b$ is simply the value of the difference between the anti-derivative $F(x)$ evaluated at the end points, i.e. $F(b)-F(a)$.
Another way of saying this is
The integral of the derivative of a function from a to b can be evaluated as the difference in the value of the function at b minus the value of the function at a.

This is basically saying that DIFFERENTIATION and INTEGRATION are inverse processes of each other.
EXAMPLE
Previously we showed that $\int_{0}^{3}\left(x^{2}+1\right) d x=12$ by using limits. Now we can do so again by using the FTC.
In order to do so, we need to find a function $F(x)$ whose derivative equals the function being integrated (called the integrand) in the given definite integral.
I claim that $F(x)=\frac{x^{3}}{3}+x$ is exactly the function that has this property. Using the FTC,

$$
\begin{aligned}
\int_{0}^{3}\left(x^{2}+1\right) d x & =\int_{0}^{3} F^{\prime}(x) d x \\
& =F(3)-F(0) \\
& =\frac{3^{3}}{3}+3-\left(\frac{0^{3}}{3}+0\right) \\
& =\frac{27}{3}+3-(0+0) \\
& =9+3 \\
& =12
\end{aligned}
$$

Applying the Fundamental Theorem of Calculus

Consider the function $y=f(t)=2 t$ sketched on the interval $[0, x]$.
The (signed) area under this graph from $t=0$ to $t=x$ is given by $\int_{0}^{x} 2 t d t$.

Use geometry to find the area trapped by the graph of the function $f(x)=2 x$, the x-axis and the lines $x=0$ and $x=b$.

GroupWork

In groups of 3 or 4 try to fill out the table below. Not everyone has to do every calculation. Split up the work among the members of the group.

For example, when $b=-1$, use geometry to find the area trapped by the graph of the function $f(x)=2 x$, the x-axis and the lines $x=0$ and $x=-1$. (What shape is this?) AREA= \qquad

For example, when $b=1$, use geometry to find the area trapped by the graph of the function $f(x)=2 x$, the x-axis and the lines $x=0$ and $x=1$. (What shape is this?) AREA= \qquad

For example, when $b=2$, use geometry to find the area trapped by the graph of the function $f(x)=2 x$, the x-axis and the lines $x=0$ and $x=2$. (What shape is this?) AREA $=$ \qquad

For example, when $b=3$, use geometry to find the area trapped by the graph of the function $f(x)=2 x$, the x-axis and the lines $x=0$ and $x=3$. (What shape is this?) AREA= \qquad
For example, when $b=-2$, use geometry to find the area trapped by the graph of the function $f(x)=2 x$, the x-axis and the lines $x=0$ and $x=-2$. (What shape is this?) AREA= \qquad

For example, when $b=-3$, use geometry to find the area trapped by the graph of the function $f(x)=2 x$, the x-axis and the lines $x=0$ and $x=-3$. (What shape is this?) AREA= \qquad

The end-point value b	Area from $x=0$ to $x=b$
$b=1$	
$b=2$	
$b=3$	
$b=4$	
$b=-3$	
$b=-2$	
$b=-1$	
$b=0$	

Can we figure out what the pattern (i.e. function of b) that can be used to determine the value of $\int_{0}^{b} 2 x d x$ as b changes?

The Fundamental Theorem of Calculus says that we can evaluate $\int_{0}^{x} 2 t d t$ if we can find a function $F(t)$ such that $F^{\prime}(t)=2 t$. But we have previously shown that when $y=x^{2}$ its derivative is the function $y^{\prime}=2 x$. So this means that the function $F(t)=t^{2}$ has the derivative $F^{\prime}(t)=2 t$.
Therefore, we can use the FTC to evaluate (and simplify) $\int_{0}^{x} 2 t d t=$ \qquad
DIFFERENTIATION and INTEGRATION ARE INVERSE PROCESSES OF EACH OTHER! ANTI-DIFFERENTIATION IS INTEGRATION!

