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Introduction To Infinite Series and Sequences

DEFINITION: Infinite Sequence
A sequence is an ordered list of numbers generated by a function which takes the natural
numbers N = {0, 1, 2, 3, . . .} as input and outputs one thing for each input. This output set
is called a sequence is often denoted:

a0, a1, a2, a3, . . . or {ak}∞k=0

The terms or “elements” of the sequence are the numbers ak where k is a natural number.
The function a(k) tells you how to find the kth element of the sequence. If the sequence gets
closer and closer to a particular answer as the index of the terms grows higher and higher
this answer (which can be thought of as the last term in the sequence) is called the limit of
the sequence. If the limit L = lim

k→∞
a(k) of the sequence exists (and is finite) the sequence is

acid to CONVERGE. Otherwise, it is a divergent sequence.
EXAMPLE

Consider the sequence given by ak =

(
1

2

)k

. Let’s write down the first three or four terms

of the sequence and see if we can determine the limit of the sequence.

Exercise
What’s the next two terms in the following sequences? Can you find a formula for the pat-
tern or function predicting the kth element?
(a) 1

2
, 2

3
, 3

4
, 4

5
, . . .

(b) 2, 4, 8, 16, . . .

(c) 1, 3, 5, 7, . . .

(d) 1, -1, 1, -1, . . .

GroupWork
What is the limit of each of the sequences you analyzed above? Classify each sequence as
either convergent or divergent.
(a)
(b)
(c)
(d)
QUESTION Can a sum of an infinite list of positive numbers be finite?
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Summing an Infinite List of Numbers.
If someone gives you a list of numbers, even a long list of numbers (like 1000 of them), it
is at least theoretically possible for you to use your calculator or computer to find the sum
total of this list. Now, suppose someone gives you an infinite list of numbers, for example,

the sequence

{
1

kk

}∞

k=1

:

1, 1/22, 1/33, 1/44, 1/55, 1/66, etc.

Is it possible to find the total? What could “find the total” mean if you are adding up an
infinite list of numbers?

GroupWork
In small groups use your calculators to begin with the first number on the infinite list above,
1, and progressively add each successive number on the list, keeping track of the subtotals
you get by placing them in the chart below, with seven places after the decimal.

n nth subtotal
1 1 = 1.0000000 . . .
2 1 + 1/22 =

3 3rd subtotal =

4 4th subtotal =

5 5th subtotal =

6 6th subtotal =

What do you find happening to the subtotals? If this trend continues, what will be the first
four digits of all the subtotals beyond those in the table? None of the numbers in the list,
beyond a certain point, seem to be affecting the first four digits of the subtotals. So, if you
were somehow able to add up all of the numbers in the infinite list, what do you think the
first four digits of the total would be?

Find the first six decimals of the sum of the numbers in our infinite list.

What would you do to find the first ten decimals of the sum of the numbers in our infinite
list? (You don’t have to actually do it.)

How would you describe the sum of our infinite list of numbers using the concept of “limit”?
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DEFINITION: Infinite Series
An infinite series (or oftentimes just “series”) is the sum of the terms of a given infinite
sequence.

Formal Language of Infinite Series.
Using the proper terminology, we will discuss what you have just done. We had a list of
numbers (which we know is called a sequence of numbers):

1, 1/22, 1/33, 1/44, 1/55, 1/66, etc.

which we call the TERMS of the INFINITE SERIES and denote it using the Greek
letter

∑
1 + 1/22 + 1/33 + 1/44 + 1/55 + 1/66 + . . . =

∞∑
k=1

1/kk.

We tried to find the sum of this infinite series by looking at its SEQUENCE OF PARTIAL
SUMS (list of subtotals):

S1 = 1
S2 = 1 + 1/22

S3 = 1 + 1/22 + 1/33

S4 = 1 + 1/22 + 1/33 + 1/44

...
Sn = 1 + 1/22 + 1/33 + 1/44 + . . .+ 1/nn

...

We found that the sequence of partial sums Sn seemed to have a LIMIT (i.e. the subtotals
were stabilizing to a particular value ), and that the limit of this sequence of partial sums
was the SUM of the infinite series:

∞∑
k=1

1/kk = lim
n→∞

Sn.

When the sequence of partial sums Sn of an infinite series has a limit, the infinite series is
said to CONVERGE.
When the sequence of partial sums Sn do not have a limit, the infinite series is said to
DIVERGE.

Therefore, in this case, the infinite series
∞∑
k=1

1

kk
that we have been examining

CONVERGES.
THEOREM

If the series
∞∑
k=1

ak is convergent, then lim
k→∞

ak = 0

We Have A Test For Divergence!
Note the contrapositive statement of this theorem is also rather important to remember:

IF lim
k→∞

ak ̸= 0, THEN
∞∑
k=1

ak is divergent

This is sometimes called the Divergence Test for Infinite Series
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Finding The Sum Of An Infinite Series
DEFINITION: Geometric Series
A geometric series is a special type of infinite series where there is a fixed ratio between
successive terms in the series. A geometric series is often written

∞∑
k=0

ark = a+ ar + ar2 + ar3 + ar4 + ar5 + . . .

the first term of the series is a and the fixed ratio is r.

Geometric series are very lovely because there is a simple formula to find out not only whether
they converge or diverge, but if they converge, we can know exactly what NUMBER they
converge to. Being able to tell what an infinite sequence of terms adds up to is pretty special!

THEOREM
The sum of an infinite geometric series that starts with a and has a fixed ratio r is often
depicted S∞ and computed as

S∞ =
a

1− r
.

The geometric series converges when |r| < 1 and diverges when |r| ≥ 1.

PROOF

Exercise
Determine whether the following series are geometric, and if so, find their sum (if the series
is convergent).

(a) 1− 1

2
+

1

4
− 1

8
+

1

16
. . .

(b) 2 + 4 + 8 +16 + . . .

(c) 3 + 0.3 + 0.03 + 0.003 + 0.0003 + . . .

(d) 1 + (-1) +1 + (-1) + . . .
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