Mathematics As A Liberal Art

Math 105 Spring 2024
(36) 2024 Ron Buckmire

Fowler 309 MWF 3:00pm- 3:55pm
http://sites.oxy.edu/ron/math/105/24/

Class 4: Monday January 29

Looking For Patterns In Numbers

The Seven Original Liberal Arts

There were SEVEN fundamental liberal arts of the followers of Pythagoras: arithmetic (the study of numbers), geometry, music and spherics (what we call astronomy or the study of the spheres in the sky), grammar, logic and rhetoric. In the Middle Ages, the first group of four were grouped together and called the quadrivium while the rest where known as the trivium. These seven liberal arts came to be looked upon as the necessary equipment of an educated person. (Adapted from page 76 of the 6 th edition of An Introduction to the History of Mathematics with Cultural Connections by Jamie H. Eves, Brooks/Cole: Pacific Grove, CA, 1990.)

Friendly Numbers, Perfect Numbers, Deficient Numbers, Abundant Numbers The Pythagoreans imbued their study of numbers with all sorts of mysticism, and distinguished between arithmetic, the abstract relationship between numbers, and logistic, the pacifical art of computing with numbers.

DEFINITION: amicable or friendly numbers
Two number are said to be amicable or friendly if each is the sum of the proper divisors of the other.
EXAMPLE: 284 and 220 are friendly numbers.

DEFINITION: proper divisor

The proper divisors of a positive integer N are all the positive whole numbers that divide N exactly except for N itself. NOTE: 1 is always a proper divisor of N ! (So is $N)$. Another (archaic) term for proper divisor is aliquot part.

DEFINITION: perfect, deficient and abundant numbers

A number is said to be perfect if it is the sum of its proper divisors. The number is deficient if it is greater than the sum of its proper divisors and abundant if it is less than the sum of its proper divisors.
EXAMPLE: 6 is a perfect number, 8 is a deficient number, 12 is an abundant number.

DEFINITION: prime number

A number is said to be prime if it is a positive integer greater than 1 without having any positive whole number divisors except for itself. EXAMPLE: The first few prime numbers are: $2,3,5,7,11, \ldots$

Figurate Numbers

The Pythagoreans originated the concept of the "figurate" numbers. These are sequences of numbers associated with placing a dot in a geometric pattern and then increasing the number of dots to maintain the pattern. This represents a link between geometry and arithmetic that the Pythagoreans would have greatly appreciated.
Triangular Numbers T_{n}

Square Numbers S_{n}
\bullet
1

3

Square numbers

Pentagonal Numbers P_{n}

5

12

22

GROUPWORK

Extend the list of triangular, square and pentagonal numbers. Do you notice any patterns? What comes next? Can you find a formula for the $n^{t h}$ number in each of these sequences?

